Browse > Article
http://dx.doi.org/10.7733/jnfcwt.2018.16.4.421

Magnetite Dissolution by Copper Catalyzed Reductive Decontamination  

Kim, Seonbyeong (Korea Atomic Energy Research Institute)
Park, Sangyoon (Korea Atomic Energy Research Institute)
Choi, Wangkyu (Korea Atomic Energy Research Institute)
Won, Huijun (Korea Atomic Energy Research Institute)
Park, Jungsun (Korea Atomic Energy Research Institute)
Seo, Bumkyoung (Korea Atomic Energy Research Institute)
Publication Information
Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT) / v.16, no.4, 2018 , pp. 421-429 More about this Journal
Abstract
Hydrazine based reductive dissolution applied on magnetite oxide was investigated. Dissolution of Fe(II) and Fe(III) from magnetite takes place either by protonation, surface complexation, or reduction. Solution containing hydrazine and sulfuric acid provides hydrogen to break bonds between Fe and oxygen by protonation and electrons for the reduction of insoluble Fe(III) to soluble Fe(II) in acidic solution of pH 3. In terms of dissolution rate, numerous transition metal ions were examined and Cu(II) ion was found to be the most effective to speed up the dissolution. During the cycle of Cu(I) ions to Cu(II) ions, the released electron promoted the reduction of Fe(III) and Cu(II) ions returned to Cu(I) ion due to the oxidation of hydrazine. In the experimental results, the addition of a very low amount of cupric ion (about 0.5 mM) to the solution increased the dissolution rate about 40% on average and up to 70% for certain specific conditions. It is confirmed that even though the coordination structure of copper ions with hydrazine is not clear, the $Cu(II)/H^+/N_2H_4$ system is acceptable regarding the dissolution performance as a decontamination reagent.
Keywords
Decontamination; Reductive dissolution; Metal oxide; Reactor coolant system; Waste reduction; Catalytic effect;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M.A. Blesa, H.A. Marinovich, E.C. Baumgartner, and A.J.G. Maroto, "Mechanism of dissolution of magnetite by oxalic acid-ferrous ion solutions", Inorganic Chemistry, 26(22), 3713-3717 (1987).   DOI
2 M. Shailaja and S.V. Narasimhan, "Dissolution kinetics of nickel ferrite in chelating and reducing agents", Journal of Nuclear Science and Technology, 28(8), 748-756 (1991).   DOI
3 R. Gilbert and L. Ouellet, "Dissolution of metal oxides accumulated in nuclear steam generators: study of solutions containing organic chelating agents", Nuclear Technology, 68(3), 385-394 (1985).   DOI
4 S. Joseph, G. Visalakshi, G. Venkateswaran, and P.N. Moorthy, "Dissolution of hematite in citric acid-EDTA-ascorbic acid mixtures", Journal of Nuclear Science and Technology, 33(6), 479-485 (1996).   DOI
5 J. Manjanna, G. Venkateswaran, B.S. Sherigara, and P.V. Nayak, "Dissolution studies of chromium substituted iron oxides in reductive-complexing agent mixtures", Hydrometallurgy, 60(2), 155-165 (2001).   DOI
6 S. Konishi, K. Saito, S. Furusaki, and T. Sugo, "Sorption kinetics of cobalt in chelating porous membrane", Industrial & Engineering Chemistry Research, 31(12), 2722-2727 (1992).   DOI
7 S. Joseph, G. Venkateswaran, and P.N. Moorthy, "Dissolution of hematite in mixtures containing different chelating and reducing agents", Journal of Nuclear Science and Technology, 34(9), 917-922 (1997).   DOI
8 R.M. Sellers and W.J. Williams, "High-temperature dissolution of nickel chromium ferrites by oxalic acid and nitrilotriacetic acid", Faraday Discussions of the Chemical Society, 77, 265-274 (1984).   DOI
9 Y.S. Jun and S.T. Martin, "Microscopic observations of reductive manganite dissolution under oxic conditions", Environmental Science & Technology, 37(11), 2363-2370 (2003).   DOI
10 R. Larba, I. Boukerche, N. Alane, N. Habbache, S. Djerad, and L. Tifouti, "Citric acid as an alternative lixiviant for zinc oxide dissolution", Hydrometallurgy, 134-135, 117-123 (2013).   DOI
11 O. Larsen, D. Postma, and R. Jakobsen, "The reactivity of iron oxides towards reductive dissolution with ascorbic acid in a shallow sandy aquifer (Romo, Denmark)", Geochimica et Cosmochimica Acta, 70(19), 4827-4835 (2006).   DOI
12 S. Banwart, S. Davies, and W. Stumm, "The role of oxalate in accelerating the reductive dissolution of hematite (${\alpha}-Fe_2O_3$) by ascorbate", Colloids and Surfaces, 39(2), 303-309 (1989).   DOI
13 J. Manjanna, G. Venkateswaran, B.S. Sherigara, and P.V. Nayak, "Synthesis and dissolution of chromium substituted magnetites in V(II)-EDTA formulation", Indian Journal of Chemical Technology, 9(1), 60-67 (2002).
14 E.B. Borghi, A.E. Regazzoni, A.J.G. Maroto, and M.A. Blesa, "Reductive dissolution of magnetite by solutions containing EDTA and FeII", Journal of Colloid and Interface Science, 130(2), 299-310 (1989).   DOI
15 H.-C. Chang and E. Matijevic, "Interactions of metal hydrous oxides with chelating agents", Journal of Colloid and Interface Science, 92(2), 479-488 (1983).   DOI
16 R. Torres, M.A. Blesa, and E. Matijevic, "Interactions of metal hydrous oxides with chelating agents: IX. Reductive dissolution of hermatite and magnetite by aminocarboxylic acids", Journal of Colloid and Interface Science, 134(2), 475-485 (1990).   DOI
17 B. Ngwack and L. Sigg, "Dissolution of Fe(III) (hydr) oxides by metal-EDTA complexes", Geochimica et Cosmochimica Acta, 61(5), 951-963 (1997).   DOI
18 K. Dhamodharan, A. Pius, P.K. Sharma, S. Pugazhendi, and V. Vijayakumar, "Electro reductive dissolution of plutonium oxide - A preliminary study", International Journal of Chemical Sciences and Applications, 5, 68-75 (2014).
19 J.Y. Jung, S.Y. Park, H.J. Won, S.B. Kim, W.K. Choi, J.K. Moon, and S.J. Park, "Corrosion properties of Inconel- 600 and 304 stainless steel in new oxidative and reductive decontamination reagent", Metals and Materials International, 21(4), 678-685 (2015).   DOI
20 L.R. van Loon and W. Hummel. The role of organics on the safety of a radioactive waste repository, Paul Scherrer Institute annual report, INIS-MF-13914 (1994).
21 D. Panias, M. Taxiarchou, I. Paspaliaris, and A. Kontopoulos, "Mechanisms of dissolution of iron oxides in aqueous oxalic acid solutions", Hydrometallurgy, 42(2), 257-265 (1996).   DOI
22 Z. Homonnay, A. Vertes, E. Kuzmann, K. Varga, P. Baradlai, G. Hirschberg, J. Schunk, and P. Tilky, "Effects of AP-CITROX decontamination procedure on the surface oxide layer composition of stainless steel originating from the primary Circuit of a VVER-Type Nuclear Reactor", Journal of Radioanalytical and Nuclear Chemistry, 246(1), 131-136 (2000).   DOI
23 S.O. Lee, T. Tran, Y.Y. Park, S.J. Kim, and M.J. Kim, "Study on the kinetics of iron oxide leaching by oxalic acid", International Journal of Mineral Processing, 80(2-4), 144-152 (2006).   DOI
24 S.O. Lee, T. Tran, B.H. Jung, S.J. Kim, and M.J. Kim, "Dissolution of iron oxide using oxalic acid", Hydrometallurgy, 87(3-4), 91-99 (2007).   DOI
25 J.J. Byerley, G.L. Rempel, and G.F. Garrido, "Copper catalysed leaching of magnetite in aqueous sulfur dioxide", Hydrometallurgy, 4(4), 317-336 (1979).   DOI
26 M. Dos Santos Afonso, C.D. Di Risio, A. Roitberg, R.O. Marques, and M.A. Blesa, "Reductive dissolution of neutron- and gamma-irradiated magnetite", International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry, 36(3), 457-460 (1990).   DOI
27 E.B. Borghi, S.P. Ali, P.J. Morando, and M.A. Blesa, "Cleaning of stainless steel surfaces and oxide dissolution by malonic and oxalic acids", Journal of Nuclear Materials, 229, 115-123 (1996).   DOI
28 D. Garcia, V.I.E. Bruyere, R. Bordoni, A.M. Olmedo, and P.J. Morando, "Malonic acid: A potential reagent in decontamination processes for Ni-rich alloy surfaces", Journal of Nuclear Materials, 412(1), 72-81 (2011).   DOI
29 R. Kumar, R.K. Ray, and A.K. Biswas, "Physicochemical nature and leaching behaviour of goethites containing Ni, Co and Cu in the sorption and coprecipitation mode", Hydrometallurgy, 25(1), 61-83 (1990).   DOI
30 G. Senanayake, G.K. Das, A. de Lange, J. Li, and D.J. Robinson, "Reductive atmospheric acid leaching of lateritic smectite/nontronite ores in $H_2SO_4/Cu(II)/SO_2$ solutions", Hydrometallurgy, 152, 44-54 (2015).   DOI
31 J.A. Harrison and Z.A. Khan, "The oxidation of hydrazine on platinum in acid solution", Journal of Electroanalytical Chemistry, 28(1), 131-138 (1970).   DOI
32 L.C. Rockombeny, J.P. Feraud, B. Queffelec, D. Ode, and T. Tzedakis, "Electrochemical oxidation of oxalic acid and hydrazinium nitrate on platinum in nitric acid media", Electrochimica Acta, 66, 230-238 (2012).   DOI
33 U. Eisner and E. Gileadi, "Anodic oxidation of hydrazine and its derivatives: Part I. The oxidation of hydrazine on gold electrodes in acid solutions", Journal of Electroanalytical Chemistry, 28(1), 81-92 (1970).   DOI
34 M.A. Blesa, A.J.G. Maroto, and P.J. Morando, "Dissolution of cobalt ferrites by thioglycolic acid", Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 82(8), 2345-2352 (1986).   DOI
35 C.A. Figueroa, E.E. Sileo, P.J. Morando, and M.A. Blesa, "Dissolution of nickel rerrite in aqueous solutions containing oxalic acid and ferrous salts", Journal of Colloid and Interface Science, 225(2), 403-410 (2000).   DOI
36 E. Baumgartner, M.A. Blesa, H. Marinovich, and A.J.G. Maroto, "Heterogeneous electron transfer as a pathway in the dissolution of magnetite in oxalic acid solutions", Inorganic Chemistry, 22(16), 2224-2226 (1983).   DOI
37 M.I. Litter, M. Villegas, and M.A. Blesa, "Photodissolution of iron oxides in malonic acid", Canadian Journal of Chemistry, 72(10), 2037-2043 (1994).   DOI
38 E. Baumgartner, M.A. Blesa, and A.J.G. Maroto, "Kinetics of the dissolution of magnetite in thioglycolic acid solutions", Journal of the Chemical Society, Dalton Transactions, 9, 1649-1654 (1982).
39 E. Baumgartner, J. Romagnolo, and M.I. Litter, "Effect of anionic polyelectrolytes on the dissolution of magnetite in thioglycolic acid solutions", Journal of the Chemical Society, Faraday Transactions, 89(7), 1049-1055 (1993).   DOI
40 R. Torres, M.A. Blesa, and E. Matijevic, "Interactions of metal hydrous oxides with chelating agents: VIII. Dissolution of hematite", Journal of Colloid and Interface Science, 131(2), 567-579 (1989).   DOI