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Peroxisome proliferator-activated receptors (PPARs) are members of nuclear receptors and their activation induces 
regulation of fatty acid storage and glucose metabolism. Therefore, the PPARγ is a major target for the treatment of 
type 2 diabetes mellitus. In order to generate pharmacophore model, 1080 known agonists database was constructed 
and a training set was selected. The Hypo7, selected from 10 hypotheses, contains four features: three hydrogen-bond 
acceptors (HBA) and one general hydrophobic (HY). This pharmacophore model was validated by using 862 test set 
compounds with a correlation coefficient of 0.903 between actual and estimated activity. Secondly, CatScramble 
method was used to verify the model. Hence, the validated Hypo7 was utilized for searching new lead compounds 
over 238,819 and 54,620 chemical structures in NCI and Maybridge database, respectively. Then the leads were 
selected by screening based on the pharmacophore model, predictive activity, and Lipinski’s rules. Candidates were 
obtained and subsequently the binding affinities to PPARγ were investigated by the molecular docking simulations. 
Finally the best two compounds were presented and would be useful to treat type 2 diabetes.

Key Words: Peroxisome proliferator activated receptor γ (PPARγ), Computer-aided drug design, Pharma-
cophore model, Virtual screening, Molecular docking

Introduction

Peroxisome proliferator-activated receptor γ (PPARγ), which 
regulates gene expression, is the third component of broader 
nuclear receptor superfamily and is a modular structure including 
some functional domains. The receptor functions as heterodimer 
with retinoid X receptor (RXR) which enhances DNA-binding 
and then regulates DNA transcription by binding to defined 
nucleotide sequences (peroxisome proliferator response ele-
ment, PPRE) in the promoter region of target genes.1-4 Several 
cofactors (coactivators or corepressors) mediate the ability of 
nuclear receptors to stimulate or repress the transcription pro-
cess.5 When the mutant type of PPARγ binds with RXR, co- 
repressor constitutes complex stick to the heterodimer. Then, 
basal transcription factors (BFTs) are not binding. When the 
normal type of PPARγ binds with RXR, co-activator forms com-
plex stick to the heterodimer. After that, BTFs are binding and 
many functions are carried out.6

PPARγ consists of four domains including transcription re-
gulation domain, DNA binding domain, hinge domain, and 
ligand binding domain.7,8 Two key sites are known for the re-
gulating transcription: K107 for sumoylation, and S112 for 
phosphorylation. If phosphorylation is working, mitogen-acti-
vated protein kinase (MAPK) mediated the reaction.8 PPARγ 
contains six different forms in human, namely: PPARγ1 (wide-
spread expression and expressed in all tissues, including heart, 
muscle, colon, kidney, pancreas, and spleen), PPARγ2 (addi-
tional 28 amino acids at its N-terminus), PPARγ3 (expressed 
in macrophages, large intestine, white adipose tissue), PPARγ4, 

PPARγ5, and PPARγ7.3,9-12

Type 2 diabetes is a metabolic disease that is occurred by high 
levels of glucose in the blood. Activated PPARγ which takes a 
place in adipose tissue and macrophages promotes fat cell di-
fferentiation and regulates fatty acid storage and glucose meta-
bolism by affecting related genes. Therefore, the PPARγ is a 
major drug target for the treatment of type 2 diabetes mellitus. 
Although some naturally occurring molecules such as eicos-
noids and polyunsaturated fatty acids are capable of activating 
this receptor, artificial ligands have more potentialities as ago-
nists of PPARγ. Thus, the goal of the present study is to generate 
a meaningful pharmacophore model for PPARγ agonist which 
treats type 2 diabetes mellitus.13

The pharmacophore modeling was employed to present 
meaningful information for developing new agonist candidates 
targeting the PPARγ. The most meaningful pharmacophore was 
selected along with developed protocols and then it was well 
validated by CatScramble and test set. New lead compounds 
which have comparable structures were retrieved from database. 
New lead compounds from chemical database were selected 
and they screened by our pharmacophore model and drug-like 
properties. Finally, molecular docking studies were performed 
to calculate reasonable interactions for the final screened mole-
cules.

Methods

Data Collection and Training Set Selection. The structure 
and biological activity data for 2110 PPAR agonists were col-
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Figure 1. Chemical structures of 26 compounds in training set.

lected from the published journals.14-31 Finally, 1080 compounds 
were selected for the PPARγ agonist database after filtering 
process. The next step is the selection of training set and the 
following five general guidelines were applied for the selec-
tion. (i) The training set contains at least 16 molecules to avoid 
any fortunate correlation. (ii) The range of activity should be 
4 - 5 orders of magnitude. (iii) The molecules which have clear, 
brief structural information should be selected. (iv) To generate 
a reasonable pharmacophore model, the most active molecules 
which offer reliable chemical features should be included. (v) 
The reason of containing inactive molecules is to avoid steric 
hindrance.32 And then, based on the activity the training set 
molecules were classified into four groups of highly active, 
moderately active, least active and inactive one. As the result, 
the 26 PPARγ agonists were finally selected as the training set 
to represent structural variety and activity ranging from 0.1 nM 
to 3000 nM with EC50 (Fig. 1). The Best Conformational Anal-
ysis method and Poling Algorithm were employed with an energy 
constraint of 20 kcal/mol to generate the maximum of 250 
conformations for each training set compound.33

Pharmacophore Hypotheses Generation by HypoGen. All 
10 pharmacophore hypotheses were generated using HypoGen 
module in CATALYST 4.10.34 In this procedure, the uncertainty 
was used as default value 3, which means the ratio of the un-
certainty range of measured biological activity against actual 
activity for each compound. To specify the minimum distance 
between feature points, spacing parameter was set to 297 pico-
meters (2.97 Å) as default. After then, the best model which 
contains important chemical features was selected as PPARγ
agonist from the result of 10 hypotheses. The ranges of standard 
costs are divided by three. First, the difference of null cost and 
fixed cost is between 60 and 70 bits. Second, the total cost must 
near to the fixed cost. Third, configuration cost must be less than 
17.32 All 10 hypotheses were allowed by above ranges. Finally, 
Hypo7 was selected as the best model after considering of fol-
lowing two validations that described in next panel.

Test Set and CatScramble Validations of Pharmacophore 
Hypothesis. All 10 hypotheses are validated by the test set me-
thod and the CatScramble method.35 The 862 molecules were 
taken as test set from the in-house database by the same rule and 



Peroxisome Proliferator-Activated Receptor Agonist Design Bull. Korean Chem. Soc. 2011, Vol. 32, No. 1      203

Table 1. Information of pharmacophore hypotheses and cost values

Hypo No. Featuresa Training set Test set

Total costb ΔCostc RMSD   Correlation (r) Correlation (r)

1 AAAY 106.034 61.978 0.727 0.956 0.485
2 AAAY 106.952 61.060 0.776 0.950 0.748
3 AAAY 107.665 60.347 0.812 0.945 0.471
4 AAYY 107.840 60.172 0.815 0.944 0.493
5 AAYY 107.870 60.142 0.818 0.944 0.451
6 AAAY 108.007 60.005 0.816 0.944 0.563
7 AAAY 108.297 59.715 0.839 0.941 0.903
8 AAYY 108.884 59.128 0.861 0.938 0.523
9 AAAY 109.816 58.196 0.904 0.931 0.526

10 AAAY 111.464 56.548 0.965 0.921 0.741
aA, hydrogen-bond acceptor; Y, general hydrophobic. bNull cost for 168.012 bits, fixed cost for 99.086bits, configuration cost for 10.507 bits; Total cost 
which is the standard for estimate pharmacophore model has to close to fixed cost. cΔCost indicates the difference of null cost and total cost.

way of selecting training set, and were screened by Hypo7. The 
statistical validation of Hypo7 was performed by Fischer’s ran-
domization test, using CatScramble.33 Namely, the chemical 
structures and the actual activities in training set were randomly 
mixed each other. If some correlation values between the struc-
tures and activity are closed to our model, the best pharma-
cophore model was obtained by chance. From this validation, 
19 spread-sheets were generated by considering 95% confi-
dence level.36

Database Screening through the Pharmacophore and Drug- 
like Properties. After the validation, the most suitable com-
pounds can be screened by 4 features of Hypo7. The new lead 
compounds were obtained by screening of Maybridge database 
and NCI database. The virtual screening was performed by 
using Best Flexible Search Databases/Spread Sheets which is 
able to change the molecule conformation.37 In this step, the 
molecules are geometrically fitted with pharmacophore features 
and then generate the estimated activities.

A drug must have intestinal permeability and absorption for 
react in the body. The information was offered by Molinspira-
tion online database.38 The Lipinski’s rule-of-five proposes five 
standards for the drug. (i) The number of LogP < 5. (ii) The 
number of molecular weight < 500. (iii) The number of H-bond 
donor < 5. (iv) The number of H-bond acceptor < 10. (v) The 
number of rotatable bond < 10.39

Molecular Docking Calculation. Molecular docking cal-
culations of agonists into the active site of the PPARγ crystal 
structure (PDB ID: 2ATH) were performed by GOLD 3.0.1 
program (Genetic Optimization for Ligand Docking)40 to com-
pare with the pharmacophore mapping. The program uses a 
genetic algorithm for flexible protein-ligand docking. Scoring 
functions containing GoldScore, ChemScore and User-defined 
score are available and GoldScore was selected among the 
three scores for this study. Centroid, the center of known ligand 
binding into the active site of PPARγ, is defined as active site 
around 10 Å.37 We allowed such options ‘Ring-NHR and Ring- 
NR1R2 of flip all planar R-NR1R2 in ligand flexibility’ and 
‘-(O=C)-OH of flip protonated carboxylic acids’ in GOLD pro-
gram. Finally, the search efficiency in genetic algorithm settings 
regulated as 100%.

Results and Discussions

Pharmacophore Hypothesis Generation and Selection from 
Top 10 Hypotheses. A set of 10 pharmacophore hypotheses was 
generated using the data from the 26 training set compounds. 
The HypoGen in CATALYST was performed to analyze the costs 
such as ‘fixed cost’ which symbolizes the simple model that 
fits all data perfect and ‘null cost’ which presumes that there is 
no statistically relationship in the dataset. The more difference 
between null cost and fixed cost, the more reasonable pharma-
cophore hypothesis and the total cost of the hypothesis should 
be close to the fixed cost. A difference of cost greater than 60 
bits is a superb chance that the model represents a true correla-
tion and a value of 40 - 60 bits may suggest 75 - 90% probability 
of correlation.33 Therefore, a set of the best pharmacophore 
hypotheses was selected by some standard values like high cost 
difference (null cost – fixed cost), low error cost, low root mean 
square deviation (RMSD) and high correlation coefficient.32 All 
the information for the pharmacophore features, cost values, 
RMSD, and correlation coefficient (r) of the hypotheses are listed 
along with test set correlation (Table 1). In the table, although 
Hypo1 is the most significant hypothesis, Hypo7 pharmacophore 
model was selected by the best test set correlation (r). Because 
all values were similar among the pharmacophore hypotheses 
and the Hypo7 showed the highest test set correlation (0.903). 
Configuration cost, meaning the complication of the hypotheses 
space to explore, is a constant value preferably less than 17.36,37 
The null cost, the fixed cost, and the configuration cost value 
of the 10 hypotheses were 168.012, 99.0865, and 10.5078, res-
pectively. Seven hypotheses including Hypo7 have the same 4 
features of three hydrogen-bond acceptors (HBA) and one 
general hydrophobic (HY), while the other 3 hypotheses are 
slightly different with one hydrogen-bond acceptor replacing 
one general hydrophobic group (Table 1). Three-dimensional 
(3D) pharmacophore model of Hypo7 was represented with 
distances between the four features (Fig. 2).

All compounds in present study were sorted by their activity 
as highly active (++++, EC50 ≤ 10 nM), moderately active 
(+++, 10 nM < EC50 ≤ 100 nM), least active (++, 100 < EC50 ≤ 
1000 nM), and inactive (+, EC50 > 1000 nM). The estimated 
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Table 2. Values of training set with experimental and estimated acti-
vities

Compd
Actual 
EC50 
(nM)

Estimated 
EC50
(nM)

Errora Fit 
valueb

Activity 
scalec

Estimated 
activity 
scalec

1 0.1 0.19 +1 7.60 ++++ ++++
2 0.36 0.41 +1.1 6.98 ++++ ++++
3 0.54 0.36 ‒1.8 7.11 ++++ ++++
4 30 96 +3.2 4.62 +++ +++
5 51 160 +3.2 4.39 +++ ++
6 66 62 ‒1.1 4.80 +++ +++
7 80 28 ‒2.8 5.15 +++ +++
8 80 570 +7.1 3.84 +++ ++
9 90 230 +2.5 4.24 +++ ++

10 110 640 +5.8 3.79 ++ ++
11 160 170 +1 4.37 ++ ++
12 290 320 +1.1 4.10 ++ ++
13 300 710 +2.4 3.74 ++ ++
14 300 640 +2.1 3.79 ++ ++
15 400 320 ‒1.3 4.09 ++ ++
16 500 660 +1.3 3.78 ++ ++
17 550 450 ‒1.2 3.94 ++ ++
18 1100 900 ‒1.2 3.64 + ++
19 1356 730 ‒1.9 3.73 + ++
20 1400 960 ‒1.5 3.61 + ++
21 2000 760 ‒2.6 3.72 + +
22 2000 3100 +1.6 3.10 + ++
23 2500 750 ‒3.3 3.72 + ++
24 3000 850 ‒3.5 3.67 + ++
25 3000 720 ‒4.2 3.74 + ++
26 3300 830 ‒4 3.68 + ++

a+ indicates that the estimated EC50 is higher than the actual EC50; - indi-
cates that the estimated EC50 is lower than the actual EC50; +1 indicates 
that estimated EC50 is equal to the actual EC50. bFit value indicates how 
well the features in the pharmacophore overlap the chemical features in 
the molecule. cActivity scale: ++++, EC50 < 10 nM (highly active); +++, 
10 < EC50 ≤ 100 nM (moderately active); ++, 100 < EC50 ≤ 1000 nM 
(least active); +, EC50 > 1000 nM (inactive).
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Figure 2. Three-dimentional representation of the best hypothesis 
(Hypo7). It is comprised with three hydrogen-bond acceptors (green)
and one hydrophobic (blue). All distances are represented in Å unit.

(a) (b)

Figure 3. The Hypo7 mapping with training set compound 1 (a) which
is the highest active compound and compound 22 (b) which is the 
lowest active compound about estimated activity. Pharmacophore fea-
tures which is green for hydrogen-bond acceptor feature (HBA) and 
blue for hydrophobic (HY).
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Figure 4. Correlation between actual and calculated activity data over
862 test set compounds.

activities of 26 training set molecules were calculated based 
on the Hypo7 (Table 2). All highly active and least active com-
pounds were evaluated as same activity level and moderately 
active compounds were also measured as within the mostly 
similar range. Although the almost inactive compounds were 
predicted as least active level, all of the calculated values closed 
to the inactive level, over 700 nM. The analysis of structural 
mapping comparison was also performed between pharma-
cophore model and training set considering not only numerical 
similarity. Therefore, Hypo7 was aligned with compound 1 
(EC50 = 0.1 nM, fit value = 7.60) which shows the highest 
estimated activity and fit value and with compound 22 (EC50 = 
3100 nM, fit value = 3.10) which is the lowest one among the 
training set molecules (Fig. 3).

Validation of the Pharmacophore Model by Two Approa-
ches. In order to validate the quality of the Hypo7, test set com-
parison between estimated activity and experimental data was 
performed. The test set which composed 862 compounds repre-
senting different activity range and structure from the in-house 
database. The test set conformers were generated by same con-
formational analysis with applied to the training set. A correla-
tion coefficient of 0.903 between experimental and estimated 
activity was generated using the test set molecules (Fig. 4) and 
it indicates that Hypo7 is convictive model. One of the highest 
(compound 1) and the lowest (compound 805) active compounds 
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Table 3. CatScramble cross-validation results

Validation no. Total costa ΔCost Correlation (r)

Result for unscrambled
Hypothesis 7 108.297 59.715 0.941

Results for scrambled
Trial 1 160.186 7.826 0.468
Trial 2 142.731 25.281 0.658
Trial 3 141.595 26.417 0.668
Trial 4 158.941 9.071 0.477
Trial 5 147.072 20.94 0.602
Trial 6 141.911 26.101 0.696
Trial 7 138.951 29.061 0.702
Trial 8 135.984 32.028 0.729
Trial 9 165.513 2.499 0.364
Trial 10 147.127 20.885 0.622
Trial 11 159.785 8.227 0.465
Trial 12 151.468 16.544 0.580
Trial 13 139.437 28.575 0.713
Trial 14 170.766 ‒2.754 0.293
Trial 15 138.803 29.209 0.739
Trial 16 147.299 20.713 0.609
Trial 17 142.735 25.277 0.659
Trial 18 138.351 29.661 0.747
Trial 19 151.707 16.305 0.561

aNull cost for 168.012 bits, fixed cost for 99.086 bits, and configuration 
cost for 10.507 bits.

(a) (b)

Figure 5. The Hypo7 mapping with the highest active compound (a) 
and lowest active compound (b) from the test set.

Four featured pharmacophore

Less than 0.5 nM predicted activity

Lipinski's rule-of-five

Figure 6. Flowchart of the screening procedure to generate new com-
pounds for PPARγ agonist.

of test set are mapping on Hypo7 (Fig. 5). The predicted acti-
vities of two molecules were 0.24 nM (actual EC50 = 0.19 nM), 
and 4579 nM (actual EC50 = 10,000 nM), respectively.

Another validation approach was applied by using the Cat-
Scramble program based on Fischer randomization test to assess 
the quality of the Hypo7. The goal of this method is to prove 
whether there is a strong correlation between the chemical 
structures and the biological activity. In this test, correlation was 
measured with randomly scrambled the structures and activities. 
We chose 95% confidence level, thus 19 random spreadsheets 
were generated (Table 3) and the correlation should be low for 
significant validation. Out of the 19 trials, five had a correlation 
value around 0.7 which a little high level, but all of the Δ costs 
(null cost – total cost) were less than 30 values. Therefore, this 

statistic cross validation suggests that the Hypo7 is not generated 
by chance and thus has been concluded as meaningful pharma-
cophore hypothesis.

Database Search. The Hypo7, validated four feature pharma-
cophore model was used as a search query to retrieve com-
pounds from chemical databases, the NCI database (238,819 
compounds) and Maybridge database (54,620 compounds). 
Based on the 3D query, NCI and Maybridge databases filtered 
out 42,190 and 17,459 lead compounds, respectively. Their acti-
vities were estimated and then consequentially 3,598 in NCI 
and 1,833 compounds in Maybridge were remained by restrict-
ing the minimum estimated activity less than 0.5 nM which is 
considering the best activity value. After that, the drug-like pro-
perties of 5,431 molecules were measured by Lipinski’s rule- 
of-five using Molinspiration online database.38 The compounds 
which satisfy Lipinski’s rule (LogP < 5, molecular weight < 500, 
hydrogen bond donors < 5, hydrogen bond acceptors < 10) re-
present with the high oral bioavailability and reduced flexibility 
(rotatable bonds < 10).39 Ultimately the 96 leads from May-
bridge and 53 leads from NCI have satisfied the rules among 
5,431 compounds and overall series of screening criteria are 
provided (Fig. 6).

Molecular Docking Studies. All of the 149 lead compounds 
were docked into PPARγ active site by GOLD docking soft-
ware to calculate the interacting ability. The fitness score which 
means overall value of van der Waals and electrostatic inter-
actions is the most important for binding protein.37 So we sorted 
fitness score of top 20 compounds at first and predicted activity, 
the number of hydrogen bond and the number of non-bonded 
contact are assistant value of the molecules (Table 4). Top 2 of 
them which are based on the fitness score and estimated activity 
were selected as the drug candidate structures, NCI0077416 
(74.67 and 0.15 nM) and HTS09148 (74.30 and 0.25 nM). The 
best molecule, NCI0077416, has one hydrogen bond interaction 
were 3.27Å with Met364 and 7 hydrophobic contacts. Secon-
dary molecule, HTS09148, has one hydrogen bond interaction 
were 3.15 Å with Arg288 and 8 hydrophobic contacts (Fig. 7). 
Finally, we present the two best candidate structures mapped 
with Hypo7 (Fig. 8). These two molecules showed the best 
estimated activity, calculated drug-like properties and binding 
affinity and thus can be treated as good leads in design of new 
agonist candidates targeting the PPARγ.
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Table 4. Fitness score and the number of interactions of new lead compounds

Molecule namea Fitness scoreb Estimated activity 
(nM)

Number of 
H-bond

Non-bonded 
contact Fit value Training set Fitness score Estimated 

activity (nM)

NCI0077416 74.67 0.15 1 23 7.42 1 76.43 0.19
HTS09148 74.30 0.25 1 26 7.20 3 68.79 0.36

NCI0686579 74.20 0.14 0 50 7.46 4 68.50 96
JFD03000 73.58 0.18 3 31 7.34 8 61.56 570
AW01027 69.97 0.22 2 34 7.25 14 59.64 640

NCI0134155 69.90 0.21 2 24 7.28 15 61.12 320
HTS02354 69.11 0.18 3 31 7.35 17 62.15 450
JFD00806 69.09 0.14 0 34 7.44 18 49.12 900

NCI0694551 68.30 0.19 7 40 7.32 19 56.69 730
NCI0211882 68.02 0.17 3 36 7.36 21 55.81 760
NCI0211841 66.70 0.12 1 34 7.50

AW01154 66.62 0.17 0 43 7.37
BTB04791 66.59 0.19 2 32 7.33

NCI0160913 66.46 0.21 0 33 7.28
NCI0211983 66.07 0.15 2 31 7.42

AW01220 65.74 0.15 0 39 7.43
HTS01903 65.50 0.49 0 34 6.90

NCI0160943 65.21 0.21 1 29 7.45
HTS02436 64.68 0.14 1 28 7.45
HTS03899 63.84 0.16 2 35 7.40

aMolecules with NCI are from NCI database and the rest molecules are from Maybridge database. bFitness score signifies how well the active site of 
target protein is related to the molecules.

(a)

(b)

Figure 7. Docking result of new lead compounds; NCI0077416 (a) 
interacts with Met364 by hydrogen bond and 7 hydrophobic contacts.
HTS09148 (b) has one hydrogen bond with Arg288 and 8 hydrophobic
contacts.

(a) (b)

Figure 8. The Hypo7 mapping with new lead compounds NCI0077416
(a) and HTS09148 (b).

Conclusion

Major goal of this study is to generate a meaningful pharma-
cophore model that could be applied as a query tool to search 
3D databases and screen them based on drug-like compounds 
to discover new lead molecules for PPARγ agonist. A highly 
reliable pharmacophore model, consist of three HBAs and one 
HY, Hypo7 was generated by training set of 26 structures and 
identified by the correlation coefficient of 0.941. The model 
was well validated by two methods: one using the test set of 
862 molecules and CatScramble method.

New lead compounds were obtained by validated pharma-
cophore model. From the NCI database and Maybridge data-
base, 42,190 and 17,459 structures were used for screening the 
model, respectively. The number of candidates was reduced to 
3,598 (NCI) and 1,833 (Maybridge) when predicted activity was 
considered less than 0.5 nM. Lipinski’s rule-of-five for deter-
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mine drug-like properties filtrated the new lead compounds and 
so finally 53 molecules from NCI and 96 molecules from May-
bridge were obtained. Molecular docking which plays crucial 
role to eliminate inappropriate compounds was used for select-
ing the best two candidates. Thus, Hypo7 can be helpful to find 
new chemical entities with potent activity against a target as 
well as desired physiological properties through 3D database 
search. 
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