• 제목/요약/키워드: Nrf2/ARE signaling

검색결과 43건 처리시간 0.022초

Protopanaxatriol Ginsenoside Rh1 Upregulates Phase II Antioxidant Enzyme Gene Expression in Rat Primary Astrocytes: Involvement of MAP Kinases and Nrf2/ARE Signaling

  • Jung, Ji-Sun;Lee, Sang-Yoon;Kim, Dong-Hyun;Kim, Hee-Sun
    • Biomolecules & Therapeutics
    • /
    • 제24권1호
    • /
    • pp.33-39
    • /
    • 2016
  • Oxidative stress activates several intracellular signaling cascades that may have deleterious effects on neuronal cell survival. Thus, controlling oxidative stress has been suggested as an important strategy for prevention and/or treatment of neurodegenerative diseases. In this study, we found that ginsenoside Rh1 inhibited hydrogen peroxide-induced reactive oxygen species generation and subsequent cell death in rat primary astrocytes. Rh1 increased the expression of phase II antioxidant enzymes, such as heme oxygenase-1 (HO-1), NAD(P)H:quinone oxidoreductase 1, superoxide dismutase-2, and catalase, that are under the control of Nrf2/ARE signaling pathways. Further mechanistic studies showed that Rh1 increased the nuclear translocation and DNA binding of Nrf2 and c-Jun to the antioxidant response element (ARE), and increased the ARE-mediated transcription activities in rat primary astrocytes. Analysis of signaling pathways revealed that MAP kinases are important in HO-1 expression, and act by modulating ARE-mediated transcriptional activity. Therefore, the upregulation of antioxidant enzymes by Rh1 may provide preventive therapeutic potential for various neurodegenerative diseases that are associated with oxidative stress.

Emerging Role of NRF2 Signaling in Cancer Stem Cell Phenotype

  • Steffanus P. Hallis;Jin Myung Kim;Mi-Kyoung Kwak
    • Molecules and Cells
    • /
    • 제46권3호
    • /
    • pp.153-164
    • /
    • 2023
  • Cancer stem cells (CSCs) are a small population of tumor cells characterized by self-renewal and differentiation capacity. CSCs are currently postulated as the driving force that induces intra-tumor heterogeneity leading to tumor initiation, metastasis, and eventually tumor relapse. Notably, CSCs are inherently resistant to environmental stress, chemotherapy, and radiotherapy due to high levels of antioxidant systems and drug efflux transporters. In this context, a therapeutic strategy targeting the CSC-specific pathway holds a promising cure for cancer. NRF2 (nuclear factor erythroid 2-like 2; NFE2L2) is a master transcription factor that regulates an array of genes involved in the detoxification of reactive oxygen species/electrophiles. Accumulating evidence suggests that persistent NRF2 activation, observed in multiple types of cancer, supports tumor growth, aggressive malignancy, and therapy resistance. Herein, we describe the core properties of CSCs, focusing on treatment resistance, and review the evidence that demonstrates the roles of NRF2 signaling in conferring unique properties of CSCs and the associated signaling pathways.

High Levels of Hyaluronic Acid Synthase-2 Mediate NRF2-Driven Chemoresistance in Breast Cancer Cells

  • Choi, Bo-Hyun;Ryoo, Ingeun;Sim, Kyeong Hwa;Ahn, Hyeon-jin;Lee, Youn Ju;Kwak, Mi-Kyoung
    • Biomolecules & Therapeutics
    • /
    • 제30권4호
    • /
    • pp.368-379
    • /
    • 2022
  • Hyaluronic acid (HA), a ligand of CD44, accumulates in some types of tumors and is responsible for tumor progression. The nuclear factor erythroid 2-like 2 (NRF2) regulates cytoprotective genes and drug transporters, which promotes therapy resistance in tumors. Previously, we showed that high levels of CD44 are associated with NRF2 activation in cancer stem like-cells. Herein, we demonstrate that HA production was increased in doxorubicin-resistant breast cancer MCF7 cells (MCF7-DR) via the upregulation of HA synthase-2 (HAS2). HA incubation increased NRF2, aldo-keto reductase 1C1 (AKR1C1), and multidrug resistance gene 1 (MDR1) levels. Silencing of HAS2 or CD44 suppressed NRF2 signaling in MCF7-DR, which was accompanied by increased doxorubicin sensitivity. The treatment with a HAS2 inhibitor, 4-methylumbelliferone (4-MU), decreased NRF2, AKR1C1, and MDR1 levels in MCF7-DR. Subsequently, 4-MU treatment inhibited sphere formation and doxorubicin resistance in MCF7-DR. The Cancer Genome Atlas (TCGA) data analysis across 32 types of tumors indicates the amplification of HAS2 gene is a common genetic alteration and is negatively correlated with the overall survival rate. In addition, high HAS2 mRNA levels are associated with increased NRF2 signaling and poor clinical outcome in breast cancer patients. Collectively, these indicate that HAS2 elevation contributes to chemoresistance and sphere formation capacity of drug-resistant MCF7 cells by activating CD44/NRF2 signaling, suggesting a potential benefit of HAS2 inhibition.

Regulation of Nrf2-Mediated Phase II Detoxification and Anti-oxidant Genes

  • Keum, Young-Sam
    • Biomolecules & Therapeutics
    • /
    • 제20권2호
    • /
    • pp.144-151
    • /
    • 2012
  • The molecular mechanisms by which a variety of naturally-occurring dietary compounds exert chemopreventive effects have been a subject of intense scientific investigations. Induction of phase II detoxification and anti-oxidant enzymes through activation of Nrf2/ARE-dependent gene is recognized as one of the major cellular defense mechanisms against oxidative or xenobiotic stresses and currently represents a critical chemopreventive mechanism of action. In the present review, the functional significance of Keap1/Nrf2 protein module in regulating ARE-dependent phase II detoxification and anti-oxidant gene expression is discussed. The biochemical mechanisms underlying the phosphorylation and expression of Keap1/Nrf2 proteins that are controlled by the intracellular signaling kinases and ubiquitin-mediated E3 ligase system as well as control of nucleocytoplasmic translocation of Nrf2 by its innate nuclear export signal (NES) are described.

Lonchocarpine Increases Nrf2/ARE-Mediated Antioxidant Enzyme Expression by Modulating AMPK and MAPK Signaling in Brain Astrocytes

  • Jeong, Yeon-Hui;Park, Jin-Sun;Kim, Dong-Hyun;Kim, Hee-Sun
    • Biomolecules & Therapeutics
    • /
    • 제24권6호
    • /
    • pp.581-588
    • /
    • 2016
  • Lonchocarpine is a phenylpropanoid compound isolated from Abrus precatorius that has anti-bacterial, anti-inflammatory, antiproliferative, and antiepileptic activities. In the present study, we investigated the antioxidant effects of lonchocarpine in brain glial cells and analyzed its molecular mechanisms. We found that lonchocarpine suppressed reactive oxygen species (ROS) production and cell death in hydrogen peroxide-treated primary astrocytes. In addition, lonchocarpine increased the expression of anti-oxidant enzymes, such as heme oxygenase-1 (HO-1), NAD(P)H:quinone oxidoreductase 1 (NQO1), and manganese superoxide dismutase (MnSOD), which are all under the control of Nrf2/antioxidant response element (ARE) signaling. Further, mechanistic studies showed that lonchocarpine increases the nuclear translocation and DNA binding of Nrf2 to ARE as well as ARE-mediated transcriptional activities. Moreover, lonchocarpine increased the phosphorylation of AMP-activated protein kinase (AMPK) and three types of mitogen-activated protein kinases (MAPKs). By treating astrocytes with each signaling pathway-specific inhibitor, AMPK, c-jun N-terminal protein kinase (JNK), and p38 MAPK were identified to be involved in lonchocarpine-induced HO-1 expression and ARE-mediated transcriptional activities. Therefore, lonchocarpine may be a potential therapeutic agent for neurode-generative diseases that are associated with oxidative stress.

Arctigenin Increases Hemeoxygenase-1 Gene Expression by Modulating PI3K/AKT Signaling Pathway in Rat Primary Astrocytes

  • Jeong, Yeon-Hui;Park, Jin-Sun;Kim, Dong-Hyun;Kim, Hee-Sun
    • Biomolecules & Therapeutics
    • /
    • 제22권6호
    • /
    • pp.497-502
    • /
    • 2014
  • In the present study, we found that the natural compound arctigenin inhibited hydrogen peroxide-induced reactive oxygen species (ROS) production in rat primary astrocytes. Since hemeoxygenase-1 (HO-1) plays a critical role as an antioxidant defense factor in the brain, we examined the effect of arctigenin on HO-1 expression in rat primary astrocytes. We found that arctigenin increased HO-1 mRNA and protein levels. Arctigenin also increases the nuclear translocation and DNA binding of Nrf2/c-Jun to the antioxidant response element (ARE) on HO-1 promoter. In addition, arctigenin increased ARE-mediated transcriptional activities in rat primary astrocytes. Further mechanistic studies revealed that arctigenin increased the phosphorylation of AKT, a downstream substrate of phosphatidylinositol 3-kinase (PI3K). Treatment of cells with a PI3K-specific inhibitor, LY294002, suppressed the HO-1 expression, Nrf2 DNA binding and ARE-mediated transcriptional activities in arctigenin-treated astrocyte cells. The results collectively suggest that PI3K/AKT signaling pathway is at least partly involved in HO-1 expression by arctigenin via modulation of Nrf2/ARE axis in rat primary astrocytes.

Saponins from Panax japonicus ameliorate age-related renal fibrosis by inhibition of inflammation mediated by NF-κB and TGF-β1/Smad signaling and suppression of oxidative stress via activation of Nrf2-ARE signaling

  • Gao, Yan;Yuan, Ding;Gai, Liyue;Wu, Xuelian;Shi, Yue;He, Yumin;Liu, Chaoqi;Zhang, Changcheng;Zhou, Gang;Yuan, Chengfu
    • Journal of Ginseng Research
    • /
    • 제45권3호
    • /
    • pp.408-419
    • /
    • 2021
  • Background: The decreased renal function is known to be associated with biological aging, of which the main pathological features are chronic inflammation and renal interstitial fibrosis. In previous studies, we reported that total saponins from Panax japonicus (SPJs) can availably protect acute myocardial ischemia. We proposed that SPJs might have similar protective effects for aging-associated renal interstitial fibrosis. Thus, in the present study, we evaluated the overall effect of SPJs on renal fibrosis. Methods: Sprague-Dawley (SD) aging rats were given SPJs by gavage beginning from 18 months old, at 10 mg/kg/d and 60 mg/kg/d, up to 24 months old. After the experiment, changes in morphology, function and fibrosis of their kidneys were detected. The levels of serum uric acid (UA), β2-microglobulin (β2-MG) and cystatin C (Cys C) were assayed with ELISA kits. The levels of extracellular matrix (ECM), matrix metalloproteinases (MMPs), tissue inhibitors of metalloproteinases (TIMPs), inflammatory factors and changes of oxidative stress parameters were examined. Results: After SPJs treatment, SD rats showed significantly histopathological changes in kidneys accompanied by decreased renal fibrosis and increased renal function; As compared with those in 3-month group, the levels of serum UA, Cys C and β2-MG in 24-month group were significantly increased (p < 0.05). Compared with those in the 24-month group, the levels of serum UA, Cys C and β2-MG in the SPJ-H group were significantly decreased. While ECM was reduced and the levels of MMP-2 and MMP-9 were increased, the levels of TIMP-1, TIMP-2 and transforming growth factor-β1 (TGF-β1)/Smad signaling were decreased; the expression level of phosphorylated nuclear factor kappa-B (NF-κB) was down-regulated with reduced inflammatory factors; meanwhile, the expression of nuclear factor erythroid 2-related factor 2-antioxidant response element (Nrf2-ARE) signaling was aggrandized. Conclusion: These results suggest that SPJs treatment can improve age-associated renal fibrosis by inhibiting TGF-β1/Smad, NFκB signaling pathways and activating Nrf2-ARE signaling pathways and that SPJs can be a potentially valuable anti-renal fibrosis drug.

Ginsenoside F1 attenuates pirarubicin-induced cardiotoxicity by modulating Nrf2 and AKT/Bcl-2 signaling pathways

  • Yang Zhang;Jiulong Ma;Shan Liu;Chen Chen;Qi Li;Meng Qin;Liqun Ren
    • Journal of Ginseng Research
    • /
    • 제47권1호
    • /
    • pp.106-116
    • /
    • 2023
  • Background: Pirarubicin (THP) is an anthracycline antibiotic used to treat various malignancies in humans. The clinical usefulness of THP is unfortunately limited by its dose-related cardiotoxicity. Ginsenoside F1 (GF1) is a metabolite formed when the ginsenosides Re and Rg1 are hydrolyzed. However, the protective effects and underlying mechanisms of GF1 on THP-induced cardiotoxicity remain unclear. Methods: We investigated the anti-apoptotic and anti-oxidative stress effects of GF1 on an in vitro model, using H9c2 cells stimulated by THP, plus trigonelline or AKT inhibitor imidazoquinoxaline (IMQ), as well as an in vivo model using THP-induced cardiotoxicity in rats. Using an enzyme-linked immunosorbent test, the levels of malondialdehyde (MDA), brain natriuretic peptide (BNP), creatine kinase (CK-MB), cardiac troponin (c-TnT), lactate dehydrogenase (LDH), superoxide dismutase (SOD) and glutathione (GSH) were determined. Nuclear factor (erythroid-derived2)-like 2 (Nrf2) and the expression of Nrf2 target genes, including heme oxygenase-1 (HO-1), glutathione-S-transferase (Gst), glutamate-cysteine ligase modifier subunit (GCLM), and expression levels of AKT/Bcl-2 signaling pathway proteins were detected using Western blot analysis. Results: THP-induced myocardial histopathological damage, electrocardiogram (ECG) abnormalities, and cardiac dysfunction were reduced in vivo by GF1. GF1 also decreased MDA, BNP, CK-MB, c-TnT, and LDH levels in the serum, while raising SOD and GSH levels. GF1 boosted Nrf2 nuclear translocation and Nrf2 target gene expression, including HO-1, Gst, and GCLM. Furthermore, GF1 regulated apoptosis by activating AKT/Bcl-2 signaling pathways. Employing Nrf2 inhibitor trigonelline and AKT inhibitor IMQ revealed that GF1 lacked antioxidant and anti-apoptotic effects. Conclusion: In conclusion, GF1 was found to alleviate THP-induced cardiotoxicity via modulating Nrf2 and AKT/Bcl-2 signaling pathways, ultimately alleviating myocardial oxidative stress and apoptosis.

Involvement of NRF2 Signaling in Doxorubicin Resistance of Cancer Stem Cell-Enriched Colonospheres

  • Ryoo, In-geun;Kim, Geon;Choi, Bo-hyun;Lee, Sang-hwan;Kwak, Mi-Kyoung
    • Biomolecules & Therapeutics
    • /
    • 제24권5호
    • /
    • pp.482-488
    • /
    • 2016
  • Cancer stem cells (CSCs) are a subset of tumor cells, which are characterized by resistance against chemotherapy and environmental stress, and are known to cause tumor relapse after therapy. A number of molecular mechanisms underlie the chemoresistance of CSCs, including high expression levels of drug efflux transporters. We investigated the role of the antioxidant transcription factor NF-E2-related factor 2 (NRF2) in chemoresistance development, using a CSC-enriched colonosphere system. HCT116 colonospheres were more resistant to doxorubicin-induced cell death and expressed higher levels of drug efflux transporters such as P-glycoprotein (Pgp) and breast cancer resistance protein (BCRP) compared to HCT116 monolayers. Notably, levels of NRF2 and expression of its target genes were substantially elevated in colonospheres, and these increases were linked to doxorubicin resistance. When NRF2 expression was silenced in colonospheres, Pgp and BCRP expression was downregulated, and doxorubicin resistance was diminished. Collectively, these results indicate that NRF2 activation contributes to chemoresistance acquisition in CSC-enriched colonospheres through the upregulation of drug efflux transporters.

Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain

  • Itoh, Ken;Wakabayashi, Nobunao;Katoh, Yasutake;Ishii, Tetsuro;Igarashi, Kazuhiko;Engel, James Douglas;Yamamoto, Masayuki
    • 한국환경성돌연변이발암원학회:학술대회논문집
    • /
    • 한국환경성돌연변이발암원학회 2002년도 Current Trends in Toxicological Sciences
    • /
    • pp.25-35
    • /
    • 2002
  • Transcription factor Nrf2 is essential for the antioxidant responsive element (ARE)-mediated induction of phase II detoxifying and oxidative stress enzyme genes. Detailed analysis of differential Nrf2 activity displayed in transfected cell lines ultimately led to the identification of a new protein, which we named Keap1, that suppresses Nrf2 transcriptional activity by specific binding to its evolutionarily conserved amino-terminal regulatory domain. The closest homolog of Keap1 is a Drosophila actin-binding protein called Kelch, implying that Keap1 might be a Nrf2 cytoplasmic effector. We then showed that electrophilic agents antagonize Keap1 inhibition of Nrf2 activity in vivo, allowing Nrf2 to traverse from the cytoplasm to the nucleus and potentiate the ARE response. We postulate that Keap1 and Nrf2 constitute a crucial cellular sensor for oxidative stress, and together mediate a key step in the signaling pathway that leads to transcriptional activation by this novel Nrf2 nuclear shuttling mechanism. The activation of Nrf2 leads in turn to the induction of phase II enzyme and antioxidative stress genes in response to electrophiles and reactive oxygen species.

  • PDF