DOI QR코드

DOI QR Code

Involvement of NRF2 Signaling in Doxorubicin Resistance of Cancer Stem Cell-Enriched Colonospheres

  • Ryoo, In-geun (Department of Pharmacy, Graduate School of The Catholic University of Korea) ;
  • Kim, Geon (Department of Pharmacy, Graduate School of The Catholic University of Korea) ;
  • Choi, Bo-hyun (Department of Pharmacy, Graduate School of The Catholic University of Korea) ;
  • Lee, Sang-hwan (Department of Pharmacy, Graduate School of The Catholic University of Korea) ;
  • Kwak, Mi-Kyoung (Department of Pharmacy, Graduate School of The Catholic University of Korea)
  • Received : 2016.06.28
  • Accepted : 2016.07.22
  • Published : 2016.09.01

Abstract

Cancer stem cells (CSCs) are a subset of tumor cells, which are characterized by resistance against chemotherapy and environmental stress, and are known to cause tumor relapse after therapy. A number of molecular mechanisms underlie the chemoresistance of CSCs, including high expression levels of drug efflux transporters. We investigated the role of the antioxidant transcription factor NF-E2-related factor 2 (NRF2) in chemoresistance development, using a CSC-enriched colonosphere system. HCT116 colonospheres were more resistant to doxorubicin-induced cell death and expressed higher levels of drug efflux transporters such as P-glycoprotein (Pgp) and breast cancer resistance protein (BCRP) compared to HCT116 monolayers. Notably, levels of NRF2 and expression of its target genes were substantially elevated in colonospheres, and these increases were linked to doxorubicin resistance. When NRF2 expression was silenced in colonospheres, Pgp and BCRP expression was downregulated, and doxorubicin resistance was diminished. Collectively, these results indicate that NRF2 activation contributes to chemoresistance acquisition in CSC-enriched colonospheres through the upregulation of drug efflux transporters.

Keywords

References

  1. Achuthan, S., Santhoshkumar, T. R., Prabhakar, J., Nair, S. A. and Pillai, M. R. (2011) Drug-induced senescence generates chemoresistant stemlike cells with low reactive oxygen species. J. Biol. Chem. 286, 37813-37829. https://doi.org/10.1074/jbc.M110.200675
  2. Al-Hajj, M. and Clarke, M. F. (2004) Self-renewal and solid tumor stem cells. Oncogene 23, 7274-7282. https://doi.org/10.1038/sj.onc.1207947
  3. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. and Clarke, M. F. (2003) Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. U.S.A. 100, 3983-3988. https://doi.org/10.1073/pnas.0530291100
  4. Bonnet, D. and Dick, J. E. (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 3, 730-737. https://doi.org/10.1038/nm0797-730
  5. Calkins, M. J., Johnson, D. A., Townsend, J. A., Vargas, M. R., Dowell, J. A., Williamson, T. P., Kraft, A. D., Lee, J. M., Li, J. and Johnson, J. A. (2009) The Nrf2/ARE pathway as a potential therapeutic target in neurodegenerative disease. Antioxid. Redox Signal. 11, 497-508. https://doi.org/10.1089/ars.2008.2242
  6. Chau, W., Ip, C., Mak, A., Lai, H. and Wong, A. (2013) c-Kit mediates chemoresistance and tumor-initiating capacity of ovarian cancer cells through activation of Wnt/${\beta}$-catenin-ATP-binding cassette G2 signaling. Oncogene 32, 2767-2781. https://doi.org/10.1038/onc.2012.290
  7. Chen, S.-F., Chang, Y.-C., Nieh, S., Liu, C.-L., Yang, C.-Y. and Lin, Y.-S. (2012) Nonadhesive culture system as a model of rapid sphere formation with cancer stem cell properties. PLoS ONE 7, e31864. https://doi.org/10.1371/journal.pone.0031864
  8. Cho, H. Y., Reddy, S. P. and Kleeberger, S. R. (2006) Nrf2 defends the lung from oxidative stress. Antioxid. Redox Signal. 8, 76-87. https://doi.org/10.1089/ars.2006.8.76
  9. Dean, M. (2009) ABC transporters, drug resistance, and cancer stem cells. J. Mammary Gland Biol. Neoplasia 14, 3-9. https://doi.org/10.1007/s10911-009-9109-9
  10. Dean, M., Fojo, T. and Bates, S. (2005) Tumour stem cells and drug resistance. Nat. Rev. Cancer 5, 275-284. https://doi.org/10.1038/nrc1590
  11. Diehn, M., Cho, R. W., Lobo, N. A., Kalisky. T., Dorie, M. J., Kulp, A. N., Qian, D., Lam, J. S., Ailles, L. E., Wong, M., Joshua, B., Kaplan, M. J., Wapnir, I., Dirbas, F. M., Somlo, G., Garberoglio, C., Paz, B., Shen, J., Lau, S. K., Quake, S. R., Brown, J. M., Weissman, I. L. and Clarke, M. F. (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458, 780-783. https://doi.org/10.1038/nature07733
  12. Frank, N. Y., Schatton, T. and Frank, M. H. (2010) The therapeutic promise of the cancer stem cell concept. J. Clin. Invest. 120, 41-50. https://doi.org/10.1172/JCI41004
  13. Hayes, J. D. and Dinkova-Kostova, A. T. (2014) The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem. Sci. 39, 199-218. https://doi.org/10.1016/j.tibs.2014.02.002
  14. Hayes, J. D. and McMahon, M. (2009) NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer. Trends Biochem. Sci. 34, 176-188. https://doi.org/10.1016/j.tibs.2008.12.008
  15. Jeong, H. S., Ryoo, I. G. and Kwak, M. K. (2015) Regulation of the expression of renal drug transporters in KEAP1-knockdown human tubular cells. Toxicol. In vitro 29, 884-892. https://doi.org/10.1016/j.tiv.2015.03.013
  16. Ji, L., Li, H., Gao, P., Shang, G., Zhang, D. D., Zhang, N. and Jiang, T. (2013) Nrf2 pathway regulates multidrug-resistance-associated protein 1 in small cell lung cancer. PLoS ONE 8, e63404. https://doi.org/10.1371/journal.pone.0063404
  17. Kanwar, S. S., Yu, Y., Nautiyal, J., Patel, B. B. and Majumdar, A. P. (2010) The Wnt/${\beta}$-catenin pathway regulates growth and maintenance of colonospheres. Mol. Cancer 9, 212. https://doi.org/10.1186/1476-4598-9-212
  18. Kim, T. H., Hur, E. G., Kang, S. J., Kim, J. A., Thapa, D., Lee, Y. M., Ku, S. K., Jung, Y. and Kwak, M. K. (2011) NRF2 blockade suppresses colon tumor angiogenesis by inhibiting hypoxia-induced activation of HIF-$1{\alpha}$. Cancer Res. 71, 2260-2275. https://doi.org/10.1158/0008-5472.CAN-10-3007
  19. Lau, A., Villeneuve, N. F., Sun, Z., Wong, P. K. and Zhang, D. D. (2008) Dual roles of Nrf2 in cancer. Pharmacol. Res. 58, 262-270. https://doi.org/10.1016/j.phrs.2008.09.003
  20. McMahon, M., Itoh, K., Yamamoto, M. and Hayes, J. D. (2003) Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression. J. Biol. Chem. 278, 21592-21600. https://doi.org/10.1074/jbc.M300931200
  21. Mizuno, T., Suzuki, N., Makino, H., Furui, T., Morii, E., Aoki, H., Kunisada, T., Yano, M., Kuji, S., Hirashima, Y., Arakawa, A., Nishio, S., Ushijima, K., Ito, K., Itani, Y. and Morishige, K. (2015) Cancer stemlike cells of ovarian clear cell carcinoma are enriched in the ALDHhigh population associated with an accelerated scavenging system in reactive oxygen species. Gynecol. Oncol. 137, 299-305. https://doi.org/10.1016/j.ygyno.2014.12.005
  22. Motohashi, H. and Yamamoto, M. (2004) Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol. Med. 10, 549-557. https://doi.org/10.1016/j.molmed.2004.09.003
  23. Nakai, E., Park, K., Yawata, T., Chihara, T., Kumazawa, A., Nakabayashi, H. and Shimizu, K. (2009) Enhanced MDR1 expression and chemoresistance of cancer stem cells derived from glioblastoma. Cancer Invest. 27, 901-908. https://doi.org/10.3109/07357900801946679
  24. Ponti, D., Costa, A., Zaffaroni, N., Pratesi, G., Petrangolini, G., Coradini, D., Pilotti, S., Pierotti, M. A. and Daidone, M. G. (2005) Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res. 65, 5506-5511. https://doi.org/10.1158/0008-5472.CAN-05-0626
  25. Reynolds, B. A. and Weiss, S. (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255, 1707-1710. https://doi.org/10.1126/science.1553558
  26. Ricci-Vitiani, L., Lombardi, D. G., Pilozzi, E., Biffoni, M., Todaro, M., Peschle, C. and De Maria, R. (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445, 111-115. https://doi.org/10.1038/nature05384
  27. Ryoo, I., Choi, B. and Kwak, M. K. (2015a) Activation of NRF2 by p62 and proteasome reduction in sphere-forming breast carcinoma cells. Oncotarget 6, 8167-8184. https://doi.org/10.18632/oncotarget.3047
  28. Ryoo, I. G., Shin, D. H., Kang, K. S. and Kwak, M. K. (2015b) Involvement of Nrf2-GSH signaling in $TGF{\beta}1$-stimulated epithelialto-mesenchymal transition changes in rat renal tubular cells. Arch. Pharm. Res. 38, 272-281. https://doi.org/10.1007/s12272-014-0380-y
  29. Saha, A., Padhi, S. S., Roy, S. and Banerjee, B. (2014) HCT116 colonospheres shows elevated expression of hTERT and ${\beta}$-catenin protein - a short report. J. Stem Cells 9, 243-251.
  30. Shim, G. S., Manandhar, S., Shin, D. H., Kim, T. H. and Kwak, M. K. (2009) Acquisition of doxorubicin resistance in ovarian carcinoma cells accompanies activation of the NRF2 pathway. Free Radic. Bio. Med. 47, 1619-1631. https://doi.org/10.1016/j.freeradbiomed.2009.09.006
  31. Singh, A., Misra, V., Thimmulappa, R. K., Lee, H., Ames, S., Hoque, M. O., Herman, J. G., Baylin, S. B., Sidransky, D., Gabrielson, E., Brock, M. V. and Biswal, S. (2006) Dysfunctional KEAP1-NRF2 interaction in non-small-cell lung cancer. PLoS Med. 3, e420. https://doi.org/10.1371/journal.pmed.0030420
  32. Singh, A., Wu, H., Zhang, P., Happel, C., Ma, J. and Biswal, S. (2010) Expression of ABCG2 (BCRP) is regulated by Nrf2 in cancer cells that confers side population and chemoresistance phenotype. Mol. Cancer Ther. 9, 2365-2376. https://doi.org/10.1158/1535-7163.MCT-10-0108
  33. Singh, S. K., Clarke, I. D., Terasaki, M., Bonn, V. E., Hawkins, C., Squire, J. and Dirks, P. B. (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res. 63, 5821-5828.
  34. Szotek, P. P., Pieretti-Vanmarcke, R., Masiakos, P. T., Dinulescu, D. M., Connolly, D., Foster, R., Dombkowski, D., Preffer, F., MacLaughlin, D. T. and Donahoe, P. K. (2006) Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness. Proc. Natl. Acad. Sci. U.S.A. 103, 11154-11159. https://doi.org/10.1073/pnas.0603672103
  35. Taguchi, K., Motohashi, H. and Yamamoto, M. (2011) Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution. Genes Cells 16, 123-140. https://doi.org/10.1111/j.1365-2443.2010.01473.x
  36. Trosko, J. E. (2009) Review paper: cancer stem cells and cancer nonstem cells: from adult stem cells or from reprogramming of differentiated somatic cells. Vet. Pathol. 46, 176-193. https://doi.org/10.1354/vp.46-2-176
  37. Wang, X. J., Sun, Z., Villeneuve, N. F., Zhang, S., Zhao, F., Li, Y., Chen, W., Yi, X., Zheng, W., Wondrak, G. T., Wong, P. K. and Zhang, D. D. (2008) Nrf2 enhances resistance of cancer cells to chemotherapeutic drugs, the dark side of Nrf2. Carcinogenesis 29, 1235-1243. https://doi.org/10.1093/carcin/bgn095
  38. Wang, X., Campos, C. R., Peart, J. C., Smith, L. K., Boni, J. L., Cannon, R. E. and Miller, D. S. (2014) Nrf2 upregulates ATP binding cassette transporter expression and activity at the blood-brain and blood-spinal cord barriers. J. Neurosci. 34, 8585-8593. https://doi.org/10.1523/JNEUROSCI.2935-13.2014
  39. Yang, B., Ma, Y. and Liu, Y. (2015) Elevated expression of Nrf-2 and ABCG2 involved in multi-drug resistance of lung cancer SP cells. Drug Res. (Stuttg) 65, 526-531.
  40. Ye, X. Q., Li, Q., Wang, G. H., Sun, F. F., Huang, G. J., Bian, X. W., Yu, S. C. and Qian, G. S. (2011) Mitochondrial and energy metabolismrelated properties as novel indicators of lung cancer stem cells. Int. J. Cancer 129, 820-831. https://doi.org/10.1002/ijc.25944
  41. Zhu, J., Wang, H., Sun, Q., Ji, X., Zhu, L., Cong, Z., Zhou, Y., Liu, H. and Zhou, M. (2013) Nrf2 is required to maintain the self-renewal of glioma stem cells. BMC Cancer 13, 380. https://doi.org/10.1186/1471-2407-13-380

Cited by

  1. Reactive Oxygen Species-Mediated Autophagy Defines the Fate of Cancer Stem Cells 2017, https://doi.org/10.1089/ars.2017.7223
  2. Suppression of Nrf2 Activity by Chestnut Leaf Extract Increases Chemosensitivity of Breast Cancer Stem Cells to Paclitaxel vol.9, pp.7, 2017, https://doi.org/10.3390/nu9070760
  3. Power frequency magnetic field promotes a more malignant phenotype in neuroblastoma cells via redox-related mechanisms vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-11869-8
  4. Extremely Low-Frequency Magnetic Fields and Redox-Responsive Pathways Linked to Cancer Drug Resistance: Insights from Co-Exposure-Based In Vitro Studies vol.6, pp.2296-2565, 2018, https://doi.org/10.3389/fpubh.2018.00033
  5. Anti-inflammatory and anti-oxidant mechanisms of an MMP-8 inhibitor in lipoteichoic acid-stimulated rat primary astrocytes: involvement of NF-κB, Nrf2, and PPAR-γ signaling pathways vol.15, pp.1, 2018, https://doi.org/10.1186/s12974-018-1363-6
  6. Role of heme oxygenase-1 and its reaction product, carbon monoxide, in manifestation of breast cancer stem cell-like properties: Notch-1 as a putative target pp.1029-2470, 2018, https://doi.org/10.1080/10715762.2018.1473571
  7. High NRF2 level mediates cancer stem cell-like properties of aldehyde dehydrogenase (ALDH)-high ovarian cancer cells: inhibitory role of all-trans retinoic acid in ALDH/NRF2 signaling vol.9, pp.9, 2018, https://doi.org/10.1038/s41419-018-0903-4
  8. Dysregulation of NRF2 in Cancer: from Molecular Mechanisms to Therapeutic Opportunities vol.26, pp.1, 2018, https://doi.org/10.4062/biomolther.2017.195
  9. Low-dose anti-inflammatory combinatorial therapy reduced cancer stem cell formation in patient-derived preclinical models for tumour relapse prevention vol.120, pp.4, 2019, https://doi.org/10.1038/s41416-018-0301-9
  10. Potential Applications of NRF2 Inhibitors in Cancer Therapy vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/8592348
  11. Design, Biological Evaluation, and Molecular Modeling of Tetrahydroisoquinoline Derivatives: Discovery of A Potent P-Glycoprotein Ligand Overcoming Multidrug Resistance in Cancer Stem Cells vol.62, pp.2, 2016, https://doi.org/10.1021/acs.jmedchem.8b01655
  12. Anti-inflammatory and antioxidant mechanisms of urolithin B in activated microglia vol.55, pp.None, 2016, https://doi.org/10.1016/j.phymed.2018.06.032
  13. The Role of Nrf2 Activity in Cancer Development and Progression vol.11, pp.11, 2019, https://doi.org/10.3390/cancers11111755
  14. The phosphodiesterase 10 inhibitor papaverine exerts anti-inflammatory and neuroprotective effects via the PKA signaling pathway in neuroinflammation and Parkinson’s disease mouse models vol.16, pp.1, 2019, https://doi.org/10.1186/s12974-019-1649-3
  15. SARNP, a participant in mRNA splicing and export, negatively regulates E‐cadherin expression via interaction with pinin vol.235, pp.2, 2020, https://doi.org/10.1002/jcp.29073
  16. Transcription factor-mediated regulation of the BCRP/ABCG2efflux transporter: a review across tissues and species vol.16, pp.3, 2016, https://doi.org/10.1080/17425255.2020.1732348
  17. N ‐acetyl‐ L ‐tyrosine is an intrinsic triggering factor of mitohormesis in stressed animals vol.21, pp.5, 2016, https://doi.org/10.15252/embr.201949211
  18. Nuclear Factor Erythroid-Derived 2-Like 2-Induced Reductive Stress Favors Self-Renewal of Breast Cancer Stem-Like Cells via the FoxO3a-Bmi-1 Axis vol.32, pp.18, 2016, https://doi.org/10.1089/ars.2019.7730
  19. Chemotherapeutic resistance of head and neck squamous cell carcinoma is mediated by EpCAM induction driven by IL-6/p62 associated Nrf2-antioxidant pathway activation vol.11, pp.8, 2020, https://doi.org/10.1038/s41419-020-02907-x
  20. Role of Nrf2 and mitochondria in cancer stem cells; in carcinogenesis, tumor progression, and chemoresistance vol.179, pp.None, 2016, https://doi.org/10.1016/j.biochi.2020.09.014
  21. Nrf2 Signaling Pathway in Chemoprotection and Doxorubicin Resistance: Potential Application in Drug Discovery vol.10, pp.3, 2016, https://doi.org/10.3390/antiox10030349
  22. Endothelin-1 as a Mediator of Heme Oxygenase-1-Induced Stemness in Colorectal Cancer: Influence of p53 vol.11, pp.6, 2016, https://doi.org/10.3390/jpm11060509
  23. Potential Therapies Targeting Metabolic Pathways in Cancer Stem Cells vol.10, pp.7, 2016, https://doi.org/10.3390/cells10071772
  24. Ca 2+ ‐activated K + channel K Ca 1.1 as a therapeutic target to overcome chemoresistance in three‐dimensional sarcoma spheroid models vol.112, pp.9, 2016, https://doi.org/10.1111/cas.15046
  25. Cellular stress response to extremely low‐frequency electromagnetic fields (ELF‐EMF): An explanation for controversial effects of ELF‐EMF on apoptosis vol.54, pp.12, 2016, https://doi.org/10.1111/cpr.13154