Browse > Article
http://dx.doi.org/10.4062/biomolther.2022.074

High Levels of Hyaluronic Acid Synthase-2 Mediate NRF2-Driven Chemoresistance in Breast Cancer Cells  

Choi, Bo-Hyun (Department of Pharmacology, School of Medicine, Daegu Catholic University)
Ryoo, Ingeun (Department of Pharmacology and Integrated Research Institute for Pharmaceutical Sciences, The Catholic University of Korea)
Sim, Kyeong Hwa (Department of Pharmacology, School of Medicine, Daegu Catholic University)
Ahn, Hyeon-jin (Department of Pharmacology, School of Medicine, Daegu Catholic University)
Lee, Youn Ju (Department of Pharmacology, School of Medicine, Daegu Catholic University)
Kwak, Mi-Kyoung (Department of Pharmacology and Integrated Research Institute for Pharmaceutical Sciences, The Catholic University of Korea)
Publication Information
Biomolecules & Therapeutics / v.30, no.4, 2022 , pp. 368-379 More about this Journal
Abstract
Hyaluronic acid (HA), a ligand of CD44, accumulates in some types of tumors and is responsible for tumor progression. The nuclear factor erythroid 2-like 2 (NRF2) regulates cytoprotective genes and drug transporters, which promotes therapy resistance in tumors. Previously, we showed that high levels of CD44 are associated with NRF2 activation in cancer stem like-cells. Herein, we demonstrate that HA production was increased in doxorubicin-resistant breast cancer MCF7 cells (MCF7-DR) via the upregulation of HA synthase-2 (HAS2). HA incubation increased NRF2, aldo-keto reductase 1C1 (AKR1C1), and multidrug resistance gene 1 (MDR1) levels. Silencing of HAS2 or CD44 suppressed NRF2 signaling in MCF7-DR, which was accompanied by increased doxorubicin sensitivity. The treatment with a HAS2 inhibitor, 4-methylumbelliferone (4-MU), decreased NRF2, AKR1C1, and MDR1 levels in MCF7-DR. Subsequently, 4-MU treatment inhibited sphere formation and doxorubicin resistance in MCF7-DR. The Cancer Genome Atlas (TCGA) data analysis across 32 types of tumors indicates the amplification of HAS2 gene is a common genetic alteration and is negatively correlated with the overall survival rate. In addition, high HAS2 mRNA levels are associated with increased NRF2 signaling and poor clinical outcome in breast cancer patients. Collectively, these indicate that HAS2 elevation contributes to chemoresistance and sphere formation capacity of drug-resistant MCF7 cells by activating CD44/NRF2 signaling, suggesting a potential benefit of HAS2 inhibition.
Keywords
HA synthase-2; CD44; Doxorubicin resistance; NRF2; Tumor microenvironment; 4-MU;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Bourguignon, L. Y., Shiina, M. and Li, J. J. (2014) Hyaluronan-CD44 interaction promotes oncogenic signaling, microRNA functions, chemoresistance, and radiation resistance in cancer stem cells leading to tumor progression. Adv. Cancer Res. 123, 255-275.   DOI
2 Pan, B., Toms, D. and Li, J. (2018) MicroRNA-574 suppresses oocyte maturation via targeting hyaluronan synthase 2 in porcine cumulus cells. Am. J. Physiol. Cell Physiol. 314, C268-C277.   DOI
3 Preca, B. T., Bajdak, K., Mock, K., Lehmann, W., Sundararajan, V., Bronsert, P., Matzge-Ogi, A., Orian-Rousseau, V., Brabletz, S., Brabletz, T., Maurer, J. and Stemmler, M. P. (2017) A novel ZEB1/HAS2 positive feedback loop promotes EMT in breast cancer. Oncotarget 8, 11530-11543.   DOI
4 Weigel, P. H., Hascall, V. C. and Tammi, M. (1997) Hyaluronan synthases. J. Biol. Chem. 272, 13997-14000.   DOI
5 Lau, A., Wang, X. J., Zhao, F., Villeneuve, N. F., Wu, T., Jiang, T., Sun, Z., White, E. and Zhang, D. D. (2010) A noncanonical mechanism of Nrf2 activation by autophagy deficiency: direct interaction between Keap1 and p62. Mol. Cell. Biol. 30, 3275-3285.   DOI
6 Poukka, M., Bykachev, A., Siiskonen, H., Tyynela-Korhonen, K., Auvinen, P., Pasonen-Seppanen, S. and Sironen, R. (2016) Decreased expression of hyaluronan synthase 1 and 2 associates with poor prognosis in cutaneous melanoma. BMC Cancer 16, 313.   DOI
7 Prestwich, G. D. (2011) Hyaluronic acid-based clinical biomaterials derived for cell and molecule delivery in regenerative medicine. J. Control. Release 155, 193-199.   DOI
8 Qin, Z., Dai, L., Bratoeva, M., Slomiany, M. G., Toole, B. P. and Parsons, C. (2011) Cooperative roles for emmprin and LYVE-1 in the regulation of chemoresistance for primary effusion lymphoma. Leukemia 25, 1598-1609.   DOI
9 Ropponen, K., Tammi, M., Parkkinen, J., Eskelinen, M., Tammi, R., Lipponen, P., Agren, U., Alhava, E. and Kosma, V. M. (1998) Tumor cell-associated hyaluronan as an unfavorable prognostic factor in colorectal cancer. Cancer Res. 58, 342-347.
10 Ryoo, I. G., Choi, B. H., Ku, S. K. and Kwak, M. K. (2018) High CD44 expression mediates p62-associated NFE2L2/NRF2 activation in breast cancer stem cell-like cells: implications for cancer stem cell resistance. Redox Biol. 17, 246-258.   DOI
11 Ryu, D., Lee, J. H. and Kwak, M. K. (2020) NRF2 level is negatively correlated with TGF-β1-induced lung cancer motility and migration via NOX4-ROS signaling. Arch. Pharm. Res. 43, 1297-1310.   DOI
12 Knudson, W. (1996) Tumor-associated hyaluronan. Providing an extracellular matrix that facilitates invasion. Am. J. Pathol. 148, 1721-1726.
13 Chokchaitaweesuk, C., Kobayashi, T., Izumikawa, T. and Itano, N. (2019) Enhanced hexosamine metabolism drives metabolic and signaling networks involving hyaluronan production and O-GlcNAcylation to exacerbate breast cancer. Cell Death Dis. 10, 803.   DOI
14 Ghatak, S., Misra, S. and Toole, B. P. (2002) Hyaluronan oligosaccharides inhibit anchorage-independent growth of tumor cells by suppressing the phosphoinositide 3-kinase/Akt cell survival pathway. J. Biol. Chem. 277, 38013-38020.   DOI
15 Jung, K. A., Lee, S. and Kwak, M. K. (2017) NFE2L2/NRF2 activity is linked to mitochondria and AMP-activated protein kinase signaling in cancers through miR-181c/mitochondria-encoded cytochrome c oxidase regulation. Antioxid. Redox Signal. 27, 945-961.   DOI
16 Choi, B. H., Ryoo, I. G., Kang, H. C. and Kwak, M. K. (2014) The sensitivity of cancer cells to pheophorbide a-based photodynamic therapy is enhanced by Nrf2 silencing. PLoS ONE 9, e107158.   DOI
17 Lokeshwar, V. B., Lopez, L. E., Munoz, D., Chi, A., Shirodkar, S. P., Lokeshwar, S. D., Escudero, D. O., Dhir, N. and Altman, N. (2010) Antitumor activity of hyaluronic acid synthesis inhibitor 4-methylumbelliferone in prostate cancer cells. Cancer Res. 70, 2613-2623.
18 Bernert, B., Porsch, H. and Heldin, P. (2011) Hyaluronan synthase 2 (HAS2) promotes breast cancer cell invasion by suppression of tissue metalloproteinase inhibitor 1 (TIMP-1). J. Biol. Chem. 286, 42349-42359.   DOI
19 Balaji, S., Kim, U., Muthukkaruppan, V. and Vanniarajan, A. (2021) Emerging role of tumor microenvironment derived exosomes in therapeutic resistance and metastasis through epithelial-to-mesenchymal transition. Life Sci. 280, 119750.   DOI
20 Kharaishvili, G., Simkova, D., Bouchalova, K., Gachechiladze, M., Narsia, N. and Bouchal, J. (2014) The role of cancer-associated fibroblasts, solid stress and other microenvironmental factors in tumor progression and therapy resistance. Cancer Cell Int. 14, 41.   DOI
21 Choi, S. M., Cho, Y. S., Park, G., Lee, S. K. and Chun, K. S. (2021b) Celecoxib induces apoptosis through Akt inhibition in 5-fluorouracil-resistant gastric cancer cells. Toxicol. Res. 37, 25-33.   DOI
22 Bourguignon, L. Y. (2008) Hyaluronan-mediated CD44 activation of RhoGTPase signaling and cytoskeleton function promotes tumor progression. Semin. Cancer Biol. 18, 251-259.   DOI
23 Choi, B.-h. and Kwak, M.-K. (2016) Shadows of NRF2 in cancer: resistance to chemotherapy. Curr. Opin. Toxicol. 1, 20-28.   DOI
24 Chavoshinejad, R., Marei, W. F., Hartshorne, G. M. and Fouladi-Nashta, A. A. (2016) Localisation and endocrine control of hyaluronan synthase (HAS) 2, HAS3 and CD44 expression in sheep granulosa cells. Reprod. Fertil. Dev. 28, 765-775.   DOI
25 Cho, H. Y. and Kleeberger, S. R. (2020) Mitochondrial biology in airway pathogenesis and the role of NRF2. Arch. Pharm. Res. 43, 297-320.   DOI
26 Choi, B.-H., Kim, J. M. and Kwak, M.-K. (2021a) The multifaceted role of NRF2 in cancer progression and cancer stem cells maintenance. Arch. Pharm. Res. 44, 263-280.   DOI
27 Itano, N., Sawai, T., Yoshida, M., Lenas, P., Yamada, Y., Imagawa, M., Shinomura, T., Hamaguchi, M., Yoshida, Y., Ohnuki, Y., Miyauchi, S., Spicer, A. P., McDonald, J. A. and Kimata, K. (1999) Three isoforms of mammalian hyaluronan synthases have distinct enzymatic properties. J. Biol. Chem. 274, 25085-25092.   DOI
28 Bourguignon, L. Y., Singleton, P. A., Zhu, H. and Zhou, B. (2002) Hyaluronan promotes signaling interaction between CD44 and the transforming growth factor beta receptor I in metastatic breast tumor cells. J. Biol. Chem. 277, 39703-39712.   DOI
29 Auvinen, P., Rilla, K., Tumelius, R., Tammi, M., Sironen, R., Soini, Y., Kosma, V. M., Mannermaa, A., Viikari, J. and Tammi, R. (2014) Hyaluronan synthases (HAS1-3) in stromal and malignant cells correlate with breast cancer grade and predict patient survival. Breast Cancer Res. Treat. 143, 277-286.   DOI
30 Ahrens, T., Sleeman, J. P., Schempp, C. M., Howells, N., Hofmann, M., Ponta, H., Herrlich, P. and Simon, J. C. (2001) Soluble CD44 inhibits melanoma tumor growth by blocking cell surface CD44 binding to hyaluronic acid. Oncogene 20, 3399-3408.   DOI
31 Auvinen, P., Tammi, R., Kosma, V. M., Sironen, R., Soini, Y., Mannermaa, A., Tumelius, R., Uljas, E. and Tammi, M. (2013) Increased hyaluronan content and stromal cell CD44 associate with HER2 positivity and poor prognosis in human breast cancer. Int. J. Cancer 132, 531-539.   DOI
32 Auvinen, P., Tammi, R., Parkkinen, J., Tammi, M., Agren, U., Johansson, R., Hirvikoski, P., Eskelinen, M. and Kosma, V. M. (2000) Hyaluronan in peritumoral stroma and malignant cells associates with breast cancer spreading and predicts survival. Am. J. Pathol. 156, 529-536.   DOI
33 Bartolazzi, A., Peach, R., Aruffo, A. and Stamenkovic, I. (1994) Interaction between CD44 and hyaluronate is directly implicated in the regulation of tumor development. J. Exp. Med. 180, 53-66.   DOI
34 Lee, J. K., Lee, H. E., Yang, G., Kim, K. B., Kwack, S. J. and Lee, J. Y. (2020) Para-phenylenediamine, an oxidative hair dye ingredient, increases thymic stromal lymphopoietin and proinflammatory cytokines causing acute dermatitis. Toxicol. Res. 36, 329-336.   DOI
35 Marozzi, M., Parnigoni, A., Negri, A., Viola, M., Vigetti, D., Passi, A., Karousou, E. and Rizzi, F. (2021) Inflammation, extracellular matrix remodeling, and proteostasis in tumor microenvironment. Int. J. Mol. Sci. 22, 8102.   DOI
36 Wang, X. J., Sun, Z., Villeneuve, N. F., Zhang, S., Zhao, F., Li, Y., Chen, W., Yi, X., Zheng, W., Wondrak, G. T., Wong, P. K. and Zhang, D. D. (2008) Nrf2 enhances resistance of cancer cells to chemotherapeutic drugs, the dark side of Nrf2. Carcinogenesis 29, 1235-1243.   DOI
37 Anttila, M. A., Tammi, R. H., Tammi, M. I., Syrjanen, K. J., Saarikoski, S. V. and Kosma, V. M. (2000) High levels of stromal hyaluronan predict poor disease outcome in epithelial ovarian cancer. Cancer Res. 60, 150-155.
38 Bohrer, L. R., Chuntova, P., Bade, L. K., Beadnell, T. C., Leon, R. P., Brady, N. J., Ryu, Y., Goldberg, J. E., Schmechel, S. C., Koopmeiners, J. S., McCarthy, J. B. and Schwertfeger, K. L. (2014) Activation of the FGFR-STAT3 pathway in breast cancer cells induces a hyaluronan-rich microenvironment that licenses tumor formation. Cancer Res. 74, 374-386.
39 Bourguignon, L. Y., Peyrollier, K., Xia, W. and Gilad, E. (2008) Hyaluronan-CD44 interaction activates stem cell marker Nanog, Stat3-mediated MDR1 gene expression, and ankyrin-regulated multidrug efflux in breast and ovarian tumor cells. J. Biol. Chem. 283, 17635-17651.   DOI
40 Komatsu, M., Kurokawa, H., Waguri, S., Taguchi, K., Kobayashi, A., Ichimura, Y., Sou, Y. S., Ueno, I., Sakamoto, A., Tong, K. I., Kim, M., Nishito, Y., Iemura, S., Natsume, T., Ueno, T., Kominami, E., Motohashi, H., Tanaka, K. and Yamamoto, M. (2010) The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat. Cell Biol. 12, 213-223.   DOI
41 Li, X., Du, X., Yao, W., Pan, Z. and Li, Q. (2020) TGF-β/SMAD4 signaling pathway activates the HAS2-HA system to regulate granulosa cell state. J. Cell. Physiol. 235, 2260-2272.   DOI
42 Ohashi, R., Takahashi, F., Cui, R., Yoshioka, M., Gu, T., Sasaki, S., Tominaga, S., Nishio, K., Tanabe, K. K. and Takahashi, K. (2007) Interaction between CD44 and hyaluronate induces chemoresistance in non-small cell lung cancer cell. Cancer Lett. 252, 225-234.   DOI
43 Yang, C., Sheng, Y., Shi, X., Liu, Y., He, Y., Du, Y., Zhang, G. and Gao, F. (2020) CD44/HA signaling mediates acquired resistance to a PI3Kα inhibitor. Cell Death Dis 11, 831.   DOI
44 Yu, M., Zhang, K., Wang, S., Xue, L., Chen, Z., Feng, N., Ning, C., Wang, L., Li, J., Zhang, B., Yang, C. and Zhang, Z. (2021) Increased SPHK1 and HAS2 expressions correlate to poor prognosis in pancreatic cancer. Biomed. Res. Int. 2021, 8861766.
45 Yu, Q. and Stamenkovic, I. (1999) Localization of matrix metalloproteinase 9 to the cell surface provides a mechanism for CD44-mediated tumor invasion. Genes Dev. 13, 35-48.   DOI
46 Lokman, N. A., Price, Z. K., Hawkins, E. K., Macpherson, A. M., Oehler, M. K. and Ricciardelli, C. (2019) 4-Methylumbelliferone inhibits cancer stem cell activation and overcomes chemoresistance in ovarian cancer. Cancers (Basel) 11, 1187.   DOI
47 Meng, E., Long, B., Sullivan, P., McClellan, S., Finan, M. A., Reed, E., Shevde, L. and Rocconi, R. P. (2012) CD44+/CD24- ovarian cancer cells demonstrate cancer stem cell properties and correlate to survival. Clin. Exp. Metastasis 29, 939-948.   DOI
48 Orgaz, J. L., Pandya, P., Dalmeida, R., Karagiannis, P., Sanchez-Laorden, B., Viros, A., Albrengues, J., Nestle, F. O., Ridley, A. J., Gaggioli, C., Marais, R., Karagiannis, S. N. and Sanz-Moreno, V. (2014) Diverse matrix metalloproteinase functions regulate cancer amoeboid migration. Nat. Commun. 5, 4255.   DOI
49 Shibata, T., Ohta, T., Tong, K. I., Kokubu, A., Odogawa, R., Tsuta, K., Asamura, H., Yamamoto, M. and Hirohashi, S. (2008) Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy. Proc. Natl. Acad. Sci. U.S.A. 105, 13568-13573.   DOI
50 Sheng, Y., Cao, M., Liu, Y., He, Y., Zhang, G., Du, Y., Gao, F. and Yang, C. (2021) Hyaluronan synthase 2 (HAS2) regulates cell phenotype and invadopodia formation in luminal-like breast cancer cells. Mol. Cell. Biochem. 476, 3383-3391.   DOI
51 Takaishi, S., Okumura, T., Tu, S., Wang, S. S., Shibata, W., Vigneshwaran, R., Gordon, S. A., Shimada, Y. and Wang, T. C. (2009) Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells 27, 1006-1020.   DOI
52 Otsuki, A. and Yamamoto, M. (2020) Cis-element architecture of Nrf2-sMaf heterodimer binding sites and its relation to diseases. Arch. Pharm. Res. 43, 275-285.   DOI
53 Camenisch, T. D., Spicer, A. P., Brehm-Gibson, T., Biesterfeldt, J., Augustine, M. L., Calabro, A., Jr., Kubalak, S., Klewer, S. E. and McDonald, J. A. (2000) Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme. J. Clin. Invest. 106, 349-360.   DOI
54 Bourguignon, L. Y., Singleton, P. A., Zhu, H. and Diedrich, F. (2003) Hyaluronan-mediated CD44 interaction with RhoGEF and Rho kinase promotes Grb2-associated binder-1 phosphorylation and phosphatidylinositol 3-kinase signaling leading to cytokine (macrophage-colony stimulating factor) production and breast tumor progression. J. Biol. Chem. 278, 29420-29434.   DOI
55 Son, B., Lee, S., Youn, H., Kim, E., Kim, W. and Youn, B. (2017) The role of tumor microenvironment in therapeutic resistance. Oncotarget 8, 3933-3945.   DOI
56 Sun, Y. (2016) Tumor microenvironment and cancer therapy resistance. Cancer Lett. 380, 205-215.   DOI
57 Peterson, R. M., Yu, Q., Stamenkovic, I. and Toole, B. P. (2000) Perturbation of hyaluronan interactions by soluble CD44 inhibits growth of murine mammary carcinoma cells in ascites. Am. J. Pathol. 156, 2159-2167.   DOI
58 Tiainen, S., Oikari, S., Tammi, M., Rilla, K., Hamalainen, K., Tammi, R., Kosma, V. M. and Auvinen, P. (2016) High extent of O-GlcNAcylation in breast cancer cells correlates with the levels of HAS enzymes, accumulation of hyaluronan, and poor outcome. Breast Cancer Res. Treat. 160, 237-247.   DOI
59 Udabage, L., Brownlee, G. R., Nilsson, S. K. and Brown, T. J. (2005) The over-expression of HAS2, Hyal-2 and CD44 is implicated in the invasiveness of breast cancer. Exp. Cell Res. 310, 205-217.   DOI
60 Kim, T. H., Hur, E. G., Kang, S. J., Kim, J. A., Thapa, D., Lee, Y. M., Ku, S. K., Jung, Y. and Kwak, M. K. (2011) NRF2 blockade suppresses colon tumor angiogenesis by inhibiting hypoxia-induced activation of HIF-1α. Cancer Res. 71, 2260-2275.
61 Li, Y., Li, L., Brown, T. J. and Heldin, P. (2007) Silencing of hyaluronan synthase 2 suppresses the malignant phenotype of invasive breast cancer cells. Int. J. Cancer 120, 2557-2567.   DOI
62 Okuda, H., Kobayashi, A., Xia, B., Watabe, M., Pai, S. K., Hirota, S., Xing, F., Liu, W., Pandey, P. R., Fukuda, K., Modur, V., Ghosh, A., Wilber, A. and Watabe, K. (2012) Hyaluronan synthase HAS2 promotes tumor progression in bone by stimulating the interaction of breast cancer stem-like cells with macrophages and stromal cells. Cancer Res. 72, 537-547.