• Title/Summary/Keyword: Nozzle scanning

Search Result 60, Processing Time 0.028 seconds

A Study on the Fabrication of Various 3D Microstructures using Polymer Deposition System (폴리머 적층 시스템을 이용한 다양한 3 차원 미세 구조물 제작에 관한 연구)

  • Kim, Jong-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.6
    • /
    • pp.686-692
    • /
    • 2012
  • Solid free-form fabrication (SFF) technology was developed to fabricate three-dimensional (3D) scaffolds for tissue engineering (TE) applications. In this study, we developed a polymer deposition system (PDS) and created 3D microstructures using a bioresorbable polycaprolactone (PCL) polymer. Fabrication of 3D scaffolds by PDS requires a combination of several devices, including a heating system, dispenser, and motion controller. The system can process a polymer with extremely high precision by using a 200 ${\mu}m$ nozzle. Based on scanning electron microscope (SEM) images, both the line width and the piled line height were fine and uniform. Several 3D micro-structures, including the ANU pattern (a pattern named after Andong National University), $45^{\circ}$ pattern square, frame, cylindrical, triangular, cross-shaped, and hexagon, have been fabricated using the polymer deposition system.

Characterization of Boron Nanoparticles Synthesized with a Thermal Plasma System

  • Shin, Weon-Gyu;Girshick, Steven L.;Oh, Dong-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.369-369
    • /
    • 2011
  • In the current work, we demonstrate the gas phase plasma synthesis of ultrafine boron nanoparticles by decomposing boron trichloride (BCl3) gas in an argon-hydrogen thermal plasma and quenching the hot plasma by expansion through a ceramic nozzle, driving the homogeneous nucleation of nanoparticles. It is shown that ultrafine nanoparticles can be produced from the experiments. We also show the characterization results regarding the oxidation of boron nanoparticles at room temperature using X-ray Photoelectron Spectroscopy (XPS) and the combined Scanning Transmission Electron Microscope (STEM) and Electron Energy Loss Spectroscopy (EELS).

  • PDF

Manufacture of Precsion Model Using Laser Melting Process (레이저 용융 적층 공정을 이용한 정밀 형상 제작)

  • 김재도;전병철;권택열;이영곤;신동훈
    • Laser Solutions
    • /
    • v.3 no.3
    • /
    • pp.21-29
    • /
    • 2000
  • For the direct metal shape processing the powder feed device which is different from the widely used in rapid prototyping. is developed, The three dimensional object is shaped with the melting metal powder. The developed research has applied to rapid prototyping in ultraprecision for MEMS and medical science fields required of rapid manufacture of complex shape. The goal of this study make 3D model which has precision accuracy. Powder spreading apparatus has been more improved because that the control of powder spread is very important in layer manufacturing. It consists of the vibration motor, nozzle and tube which supplies various metal powder. This apparatus could control the spreading velocity that could control powder spreading thickness. Laser on/off switch was adapted because laser scanning velocity must be preserved constantly to prevent heat transformation of laser overheating. The error between sintered thickness md experimental one occurred by shrinkage in sintering melting process. The problem of heat transformation was solved by On/Off switching system.

  • PDF

Tool fracture detection in end milling using cutting force and acoustic emission propagated through cutting fluid (엔드밀 가공시 절삭력과 절삭유를 통해 전파된 음향방출을 이용한 공구파손 검출)

  • Maeng, M.J.;Cho, S.S.;Chung, J.K.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.11
    • /
    • pp.163-170
    • /
    • 1997
  • End milling experiments are conducted to investigate characteristics of acoustic emission (AE) and cutting force singals due to tool fracture. The AE signals are obtained with a sensor attached to cutting fluid discharge nozzle. Tool states are identified with scanning electron microscopy and optical microscopy. It is demonstrated that the AE signals provide reliable informations about the cutting processes and tool states. Morever, tool fracture can be detected successfully using both the AE count rate and the standard deviation of principal cutting force.

  • PDF

The Effect of Substrate Temperature on Superconducting Properties of YBCO Films Prepared by Spray Pyrolysis Method using Metal Nitrate Precursors (분사열분해 CVD 법으로 증착된 YBCO 박막의 특성에 미치는 기판 온도의 영향)

  • Kim, Jae-Geun;Hong, Suk-Kwan;Yu, Seok-Koo;Cho, Han-Woo;Kim, Byung-Joo;Ahn, Ji-Hyun;Hong, Gye-Won;Lee, Hee-Gyoun
    • Progress in Superconductivity
    • /
    • v.9 no.1
    • /
    • pp.102-106
    • /
    • 2007
  • YBCO films have been synthesized using a spray pyrolysis method. We used nitrates of Y, Ba, Cu as precursors. Deposition was made on $LaAlO_3$ (100) single crystal substrate by spraying the mist of aqueous precursor solution generated by a concentric nozzle. The distance between concentric nozzle and substrate was 15 cm. C-axis oriented films were obtained at deposition temperature of $740{\sim}800^{\circ}C$ and working pressure of 20 Torr. Oxygen partial pressure was 3 Torr and substrate was transported with the speed ranging from 0.23 cm/min to 0.7 cm/min by reel to reel. Scanning electron microscope (SEM) and X-ray diffraction (XRD) observation revealed that films are smooth and highly textured with (001) planes parallel to substrate. Highest critical current density (Jc) was $1.38\;MA/cm^2$ at 77K and self-field for the film with a thickness of $0.5\;{\mu}m$ prepared at a substrate temperature of $780^{\circ}C$ and $PO_2\;=3\;Torr$. The effect of temperature on the microstructure and YBCO phase formation will be discussed.

  • PDF

Deposition of YBCO Films on Moving Substrate by a Spray Pyrolysis method (분무 열분해 CVD법으로 이동 중인 LaAlO_3(100) 단결정 위에 증착시킨 YBCO 박막의 특성)

  • Kim, Jae-Gun;Hong, Suk-Kwan;Kim, Ho-Jin;Yu, Seok-Koo;Cho, Han-Woo;Ahn, Jin-Hyun;Joo, Jin-Hoo;Lee, Hee-Gyoun;Hong, Gye-Won
    • Progress in Superconductivity
    • /
    • v.8 no.1
    • /
    • pp.93-97
    • /
    • 2006
  • YBCO films were deposited on a moving substrate by a spray pyrolysis method using nitrate aqueous solution as precursors. Deposition was made on $LaAlO_3$(100) single crystal substrate by spraying precursor droplets generated by a concentric nozzle. The cation ratio of precursor solution was Y:Ba:Cu=1:2.65:4.5. The distance between nozzle and substrate was 15 cm. Substrate was transported with a speed ranging from 0.23 cm/min to 0.5 cm/min. Films were deposited at the pressure ranging from 10 Torr to 20 Torr and the deposition temperature was ranged from $740^{\circ}C\;to\;790^{\circ}C$. Oxygen partial pressure was controlled between 1 Tow and S Torr. Superconducting YBCO films were obtained from $740^{\circ}C\;to\;790^{\circ}C$ with an oxygen partial pressure of 3 Torr. Scanning electron microscope(SEM) and X-ray diffraction(XRD) observation revealed that films are smooth and highly texture with(001) plans parallel to substrate plane. Highest Jc was 0.72 $MA/cm^2$ at 77K and self-field for the film with a thickness of 0.15 m prepared at a substrate temperature of $740^{\circ}C$ and $PO_2$=3 Torr.

  • PDF

Study on the Corrosion Characteristics in the Slag Line of SEN Oxide Refractory (산화물계 SEN내화물의 슬래그 라인부 침식특성 연구)

  • Sung, Young Taek;Son, Jeong Hun;Lee, Sung Seok;Bae, Dong Sik
    • Korean Journal of Materials Research
    • /
    • v.24 no.1
    • /
    • pp.53-59
    • /
    • 2014
  • The corrosion resistance of submerged entry nozzle (SEN) materials were investigated for high-class steel manufacturing. Composite samples were fabricated by mixing $ZrO_2$, $Al_2O_3$, MgO, mullite, spinel, and carbon. The raw materials were mixed with attrition milling, compacted in a uniaxial pressure of 200MPa and calcined at $1000^{\circ}C$ for 3 h in $N_2$ atmosphere. The bulk density and apparent porosity of the calcined samples were measured by the liquid displacement method in water using Archimedes's principle. The corrosion resistance of the samples were measured by cup test with mold powder at $1550^{\circ}C$ for 2 h. The microstructure and elemental analysis of samples were observed by scanning electron microscopy (SEM), energy dispersive spectrum (EDS), and X-ray diffraction pattern (XRD). The XRD result shows that the starting raw materials were crystalline phase. The microstructure of fabricated specimen was investigated before and after corrosion tests at $1000^{\circ}C$ and $1550^{\circ}C$ for 2h. $ZrO_2$-C composite showed good resistance in the slag corrosion test. Among the composite oxide materials, $ZrO_2-Al_2O_3$-C and $ZrO_2$-MgO-C showed better resistance than $ZrO_2$-C in the slag corrosion test. The diameter variation index of $ZrO_2$-C refractory was 16.1 at $1000^{\circ}C$ for 2 h. The diameter variation index of the $ZrO_2-Al_2O_3$-C refractory was larger than that of the $ZrO_2$-C refractory at $1550^{\circ}C$ for 2 h.

Control of Microstructure on TiO2 Nanofibers for Photocatalytic Application (광촉매 응용을 위한 TiO2 나노 섬유의 미세구조 제어)

  • Lee, Chang-Gyu;Kim, Wan-Tae;Na, Kyeong-Han;Park, Dong-Cheol;Yang, Wan-Hee;Choi, Won-Youl
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.6
    • /
    • pp.417-421
    • /
    • 2018
  • $TiO_2$ has excellent photocatalytic properties and several studies have reported the increase in its specific surface area. The structure of $TiO_2$ nanofibers indicates promising improved photocatalytic properties and these nanofibers can thus potentially be applied in air pollution sensors and pollutant removal filters. In this study, a $TiO_2$ nanofiber was fabricated by the electrospinning method. The fabrication processing factors such as the applied voltage, the distance between nozzle and collector, and the inflow rate of solution were controlled. The precursor was titanium (IV) isopropoxide and as-spun $TiO_2$ nanofibers were heated at $450^{\circ}C$ for 2 h to obtain an anatase crystalline structure. The microstructure was analyzed using field emission scanning electron microscope (FE-SEM) and X-ray diffraction analysis (XRD). The anatase phase was observed in the $TiO_2$ nanofibers after heat treatment. The diameter of $TiO_2$ nanofibers increased with the flow rate, but decreased with decreasing applied voltage and nozzle to collector distance. The diameter of $TiO_2$ nanofibers was controlled in the range of 364 nm to 660 nm. These nanofibers are expected to be very useful in photocatalytic applications.

A Green Preparation of Drug Loaded PAc-β-CD Nanoparticles from Supercritical Fluid (초임계 유체를 이용한 약물이 담지된 PAc-β-CD 나노 입자의 친환경적인 제조)

  • Jang, Min Ki;Kim, Yong Hun;Kim, Dong Woo;Lee, Si Yun;Lim, Kwon Taek
    • Clean Technology
    • /
    • v.26 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • Rapid expansion of supercritical solution (RESS) process was used to make molsidomine (MOL) loaded peracetyl-β-cyclodextrin (PAc-β-CD) nanoparticles, which were collected into the air. The effect of the concentration of the drug PAc-β-CD (0.5 and 1 wt%), extraction temperature (45 ~ 60 ℃), nozzle length (5 ~ 20 mm) and internal diameter (ID) (50 ~ 150 μm) of a capillary, and spray distance on the particle size and morphology of the resulting particles were investigated. The interaction of a drug and PAc-β-CD was confirmed by 1H-NMR spectroscopy while the particle size was measured by means of a scanning electron microscope. It was found that increasing the temperature from 45 ℃ to 60 ℃ and decreasing the nozzle diameter from 150 μm to 50 μm had an increasing effect on the average particle size, while increasing the spray distance led to a decrease in the average particle size at a constant pressure of 34.5 MPa and temperature of 45 ℃. With 0.5 wt% of PAc-β-CD, the capillary nozzle of short length (5 mm) and small ID (50 μm) gave the smallest size (165 nm). The obtained nanoparticles showed increased dispersity and solubility in oil. The oil suspension of the inclusion complex showed increased sustainability, which can increase the in-vitro controlled release time of the drug.

A Study on UV Laser Ablation for Micromachining of PCB Type Substrate (다층 PCB 기판의 미세 가공을 위한 UV레이저 어블레이션에 관한 연구)

  • 장원석;김재구;윤경구;신보성;최두선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.887-890
    • /
    • 1997
  • Recently micromachining using DPSSL(Diode Pumped Solid State Laser) with 3rd harmonic wavelength is actively studied in laser machining area. Micromachining using DPSSL have outstanding advantages as UV source comparing with excimer laser in various aspect such a maintenance cost, maskless machining, high repetition rate and so on. In this study micro-drilling of PCB type substrate which consists of Cu-PI-Cu layer was performed using DPSS Nd:YAG laser(355nm, wavelength) in vector scanning method. Experimental and numerical method(Matlab simulation, FEM) are used to optimize process parameter and control machining depth. The man mechanism of this process is laser ablation. It is known that there is large gap between energy threshold of copper and that of PI. Matlab simulation considering energy threshold of material is performed to effect of duplication of pulse and FEM thermal analysis is used to predict the ablation depth of copper. This study could be widely used in various laser micromachining including via hole microdrilling of PCB, and micromachining of semiconductor components, medical parts and printer nozzle and so on.

  • PDF