Browse > Article
http://dx.doi.org/10.4313/JKEM.2018.31.6.417

Control of Microstructure on TiO2 Nanofibers for Photocatalytic Application  

Lee, Chang-Gyu (Department of Advanced Materials Engineering, Gangneung-Wonju National University)
Kim, Wan-Tae (Department of Advanced Materials Engineering, Gangneung-Wonju National University)
Na, Kyeong-Han (Department of Advanced Materials Engineering, Gangneung-Wonju National University)
Park, Dong-Cheol (Department of Advanced Materials Engineering, Gangneung-Wonju National University)
Yang, Wan-Hee (WITH M-TECH Co., Ltd.)
Choi, Won-Youl (Department of Advanced Materials Engineering, Gangneung-Wonju National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.31, no.6, 2018 , pp. 417-421 More about this Journal
Abstract
$TiO_2$ has excellent photocatalytic properties and several studies have reported the increase in its specific surface area. The structure of $TiO_2$ nanofibers indicates promising improved photocatalytic properties and these nanofibers can thus potentially be applied in air pollution sensors and pollutant removal filters. In this study, a $TiO_2$ nanofiber was fabricated by the electrospinning method. The fabrication processing factors such as the applied voltage, the distance between nozzle and collector, and the inflow rate of solution were controlled. The precursor was titanium (IV) isopropoxide and as-spun $TiO_2$ nanofibers were heated at $450^{\circ}C$ for 2 h to obtain an anatase crystalline structure. The microstructure was analyzed using field emission scanning electron microscope (FE-SEM) and X-ray diffraction analysis (XRD). The anatase phase was observed in the $TiO_2$ nanofibers after heat treatment. The diameter of $TiO_2$ nanofibers increased with the flow rate, but decreased with decreasing applied voltage and nozzle to collector distance. The diameter of $TiO_2$ nanofibers was controlled in the range of 364 nm to 660 nm. These nanofibers are expected to be very useful in photocatalytic applications.
Keywords
Electrospinning; $TiO_2$ nanofiber; Anatase; Photocatalyst;
Citations & Related Records
연도 인용수 순위
  • Reference
1 I. D. Kim, A. Rothschild, B. H. Lee, D. Y. Kim, S. M. Jo, and H. L. Tuller, Nano Lett., 6, 2009 (2006). [DOI: https://doi.org/10.1021/nl061197h]   DOI
2 H. Li, W. Zhang, B. Li, and W. Pan, J. Am. Ceram. Soc., 93, 2503 (2010). [DOI: https://doi.org/10.1111/j.1551-2916.2010.03841.x]   DOI
3 J. Doshi and D. H. Reneker, J. Electrostat., 35, 151 (1995). [DOI: https://doi.org/10.1016/0304-3886(95)00041-8]   DOI
4 K. H. Na, W. T. Kim, D. C. Park, H. G. Shin, S. H. Lee, J. Park, T. H. Song, and W. Y. Choi, Thin Solid Films, 660, 358, (2018). [DOI: https://doi.org/10.1016/j.tsf.2018.06.018]   DOI
5 Q. Fan and M. S. Whittingham, Electrochem. Solid-State Lett., 10, A48 (2007). [DOI: https://doi.org/10.1149/1.2422749]   DOI
6 Z. Li, H. Zhang, W. Zheng, W. Wang, H. Huang, C. Wang, A. G. MacDiarmid, and Y. Wei, J. Am. Chem. Soc., 130, 5036 (2008). [DOI: https://doi.org/10.1021/ja800176s]   DOI
7 S. M. Park, S. Eom, D. Choi, S. J. Han, S. J. Park, and D. S. Kim, Chem. Eng. J., 335, 712 (2018). [DOI: https://doi.org/10.1016/j.cej.2017.11.018]   DOI
8 T. H. Hwang, W. T. Kim, and W. Y. Choi, J. Nanosci. Nanotechnol., 17, 4812 (2017). [DOI: https://doi.org/10.1166/jnn.2017.14275]   DOI
9 Z. L. Wang, R. P. Gao, J. L. Gole, and J. D. Stout, Adv. Mater., 12, 1938 (2000). [DOI: https://doi.org/10.1002/1521-4095 (200012)12:24<1938::AID-ADMA1938>3.0.CO;2-4]   DOI
10 R. Ciriminna, A. Fidalgo, V. Pandarus, F. Beland, L. M. Ilharco, and M. Pagliaro, Chem. Rev., 113, 6592 (2013). [DOI: https://doi.org/10.1021/cr300399c]   DOI
11 S. Guo, R. Sivakumar, H. Kitazawa, and Y. Kagawa, J. Am. Ceram. Soc., 90, 1667 (2007). [DOI: https://doi.org/10.1111/j.1551-2916.2007.01636.x]   DOI
12 A. C. Patel, S. Li, J. M. Yuan, and Y. Wei, Nano Lett., 6, 1042 (2006). [DOI: https://doi.org/10.1021/nl0604560]   DOI
13 W. Han, Y. D. Wang, and Y. F. Zheng., Adv. Mat. Res., 79, 389 (2009). [DOI: https://doi.org/10.4028/www.scientific.net/AMR.79-82.389]
14 R. Leary and A. Westwood, Carbon, 49, 741 (2011). [DOI: https://doi.org/10.1016/j.carbon.2010.10.010]   DOI
15 M. Lubke, I. Johnson, N. M. Makwana, D. Brett, P. Shearing, Z. Liu, and J. A. Darr, J. Power Sources, 294, 94 (2015). [DOI: https://doi.org/10.1016/j.jpowsour.2015.06.039]   DOI
16 J. A. Park, J. Moon, S. J. Lee, S. H. Kim, T. Zyung, and H. Y. Chu, Mater. Lett., 64, 255 (2010). [DOI: https://doi.org/10.1016/j.matlet.2009.10.052]   DOI
17 H. Tang, F. Yan, Q. Tai, and H.L.W. Chan, Biosens. Bioelectron., 25, 1646 (2010). [DOI: https://doi.org/10.1016/j.bios.2009.11.027]   DOI
18 Y. Yuan, Y. Zhao, H. Li, Y. Li, X. Gao, C. Zheng, and J. Zhang, J. Hazard. Mater., 227, 427 (2012). [DOI: https://doi.org/10.1016/j.jhazmat.2012.05.003]
19 T. H. Hwang, W. T. Kim, and W. Y. Choi, J. Electron. Mater., 45, 3195 (2016). [DOI: https://doi.org/10.1007/s11664-016-4464-y]   DOI