• Title/Summary/Keyword: Nozzle Position

Search Result 212, Processing Time 0.025 seconds

AN EXPERIMENTAL STUDY ON THE EFFICIENCY OF A LOCAL VENTILATION SYSTEM AND THE PROTECTING FACE MASKS IN DENTAL LABORATORIES

  • Kim, Uoong-Chul
    • Journal of Technologic Dentistry
    • /
    • v.11 no.1
    • /
    • pp.95-102
    • /
    • 1989
  • This study was performed to study the efficiency of a local ventilation system, installed in dental laboratories, and of two types of protecting face masks. The dust originating from the workpiece as well as from the wheels and stones was collected on air filters in the cutting cycle during coarse and fine grinding, and in the subsequent polishing procedures of each specific dental material. The efficiency of the ventilation system was measured on the basis of weight reduction of dust in the breathing air at a distance about 20-40 cm from workpiece. The results were as follows: 1. Use of the local ventilation system reduced the amounts of respirable dust to an average level of 21.4%, although the efficiency of the local ventilation system varied depending upon materials used. 2. Mounting a nozzle on the tube improved the efficiency of the ventilation system considerably. The efficiency of the local ventilation system also increased as the workpiece was closing to the tube inlet. 3. With or without the local ventilation system, the distance between the position of the workpiece and sampler greatly affected the dust level. 4. The face masks covering the sampler improved the efficiency of the ventilation system considerably.

  • PDF

A Study on the Spray Characteristics of CRDI System with Ambient Pressure (분위기압력에 따른 CRDI 분사계의 분무특성 연구)

  • Kim, Sang-Am;Wang, Woo-Gyeong
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.21-28
    • /
    • 2014
  • The studies of the spray characteristics for a CRDI engine had been advancing by many researchers, because the performance and exhaust emission were significantly affected with the spray characteristics. But most experiments of the studies would be done at low ambient pressure conditions under 2MPa. In this study, injection rates were measured with Zeuch's method at various ambient pressures to 5MPa and a constant injection pressure of 130MPa. On the same conditions, non-evaporating spray images were taken with a high speed camera and analyzed carefully with Adobe Photoshop CS3. Macroscopic spray characteristics and breakup processes in the spray could be found from the examined and analyzed data. The initial injection rate, penetration, angle, velocity and breakup of the spray were practically affected with a variation of the ambient pressure, but the injection start time and injection period were scarcely affected. As the ambient pressure was higher, the breakup of a high density droplet region in the spray was happened slowly and the main position of breakup was shifted from a front of the spray to a upstream around a nozzle. The results and techniques of spray visualization and injection rate measurement in this study would be practically effective to study a high pressure diesel spray for a CRDI.

Cooling of a Rotating Heated Flat Plate by Water Jet Impingement (회전전열평판(回轉傳熱平板)의 충돌수분류(衝突水噴流)에 의한 냉각(冷却))

  • Jeon, Sung-Taek;Kim, Yeun-Young;Lee, Jong-Su;Park, Jong-Suen;Lee, Doug-Bong
    • Solar Energy
    • /
    • v.15 no.2
    • /
    • pp.47-64
    • /
    • 1995
  • An experimental investigation is carried out to see the local heat transfer characteristics of a rotating heated flat plate surface with constant heat flux when a normal water jet is impinging on this surface. The effects of jet Reynolds number, rotating Reynolds number are investigated while the distance between the nozzle and the flat plate is set fixed. As a result, correlations to relate the local Nusselt number to the local rotational Reynolds number, jet Prandtl number and the dimensionless radial position are presented.

  • PDF

CPFD Simulation of Bubble Flow in a Bubbling Fluidized Bed with Shroud Nozzle Distributor and Vertical Internal (CPFD 시뮬레이션을 통한 Shroud 노즐 및 수직 구조물이 설치된 기포 유동층 반응기 내에서의 기포 흐름 해석)

  • Lim, Jong Hun;Bae, Keon;Shin, Jea Ho;Lee, Dong Ho;Han, Joo Hee;Lee, Dong Hyun
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.678-686
    • /
    • 2016
  • The effect of internal and shroud nozzle distributor to bubbling fluidized beds which has the size of $0.3m-ID{\times}2.4m-high$ column was modeled by CPFD (Computational Particle-Fluid Dynamics). Metal-grade silicon particles (MG-Si) were used as bed materials which have $d_p=149{\mu}m$, ${\rho}_p=2,325kg/m^3$ and $U_{mf}=0.02m/s$. Total bed inventory and static bed height were 75 kg and 0.8 m, respectively. Effect of vertical internal on the bubble rising velocity was investigated. Bubbles were split by internal when the axial position of the internal from the distributor, z = 0.45 m. Bed pressure drop and axial solid holdup were not affected by internal. However, in the case that axial distance of internal from distributor was too close to jet penetration length, bubbles were not separated and bypassed internal, and faster than without internal or z = 0.45 m.

A Study on the Combustion Flow Characteristics of a Exhaust Gas Recirculation Burner with the Change of Outlet Opening Position (배기가스 재순환 버너에서 연소가스 출구 위치에 따른 연소 유동 특성에 관한 연구)

  • Ha, Ji-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.8-13
    • /
    • 2018
  • Nitrogen oxides (NOx) have recently been very influential in the generation of ultrafine dust, which is of great social interest in terms of improving the atmospheric environment. Nitrogen oxides are generated mainly by the reaction of nitrogen and oxygen in air in a combustion gas atmosphere of high temperature in a combustion apparatus such as thermal power generation. Recently, research has been conducted on the combustion that recirculates the exhaust gas to the cylindrical burner by using a piping using a Coanda nozzle. In this study, three types of burners were carried out through computational fluid analysis. Case 1 burner with the outlet of the combustion gas to the right, Case 2 burner with both sides as gas exit, Case 3 burner with left side gas exit. The pressure, flow, temperature, combustion reaction rate and distribution characteristics of nitrogen oxides were compared and analyzed. The combustion reaction occurred in Case 1 and Case 2 burner in the right direction with combustion gas recirculation inlet and Case 3 burner in the vicinity of mixed gas inlet. The temperature at the outlet was about $100^{\circ}C$ lower than that of the other burners as the Case 2 burner was exhausted to both sides. The NOx concentration of Case 1 burner at the exit was about 20 times larger than that of the other burners. From the present study, it could be seen that it is effective for the NOx reduction to exhaust the exhaust gas to both side gas exits or to exhaust the exhaust gas to the opposite direction of inlet of recirculation gas.

Cumulative Distributions and Flow Structure of Two-Passage Shear Coaxial Injector with Various Gas Injection Ratio (2중 유로형 전단 동축 분사기의 기체 분사율에 따른 유동 및 입도분포)

  • Lee, Inchul;Kim, Dohun;Koo, Jaye
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.7
    • /
    • pp.675-682
    • /
    • 2013
  • To verify the effect of inner- and outer-stage gas jets, a shear coaxial injector was designed to analyze the axial velocity profile and breakup phenomenon with an increase in the measurement distance. When the measurement position was increased to Z/d=100, the axial flow showed a fully developed shape due to the momentum transfer, aerodynamic drag effect, and viscous mixing. An inner gas injection, which induces a higher momentum flux ratio near the nozzle, produces the greater shear force on atomization than an outer gas injection. Inner- and Outer-stage gas injection do not affect the mixing between the inner and outer gas flow below Z/d=5. The experiment results showed that the main effect of liquid jet breakup was governed by the gas jet of an inner stage. As the nozzle exit of the outer-stage was located far from the liquid column, shear force and turbulence breaking up of the liquid jets do not fully affect the liquid column. In the case of an inner-stage gas injection momentum flux ratio within 0.84, with the increase in the outer gas momentum flux ratio, the SMD decreases. However, at an inner-stage gas jet momentum flux ratio over 1.38, the SMD shows the similar distribution.

A Study on the Effects of Droplets Characteristics of Water Mist on the Spray Density on the Floor (미분무 액적특성이 살수밀도에 미치는 영향 연구)

  • Kim, Jong-Hoon;Park, Won-Hee;Kim, Woon-Hyung;Myoung, Sang-Yup
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.1
    • /
    • pp.120-127
    • /
    • 2021
  • Purpose: In this study, the effect of changes in the variables related to water droplets on the spray density on the floor in the analysis of the water mist fire protection system using FDS was analyzed. Method: When the spray of the water mist nozzle was analyzed in FDS, Particles Per Seconds, Particle Velocity, Size Distribution, and Spray Pattern Shape that can be set in relation to droplets were input to review the analyzed results. Result: In the analysis results, when the number of particles per second was set above a certain value, the spray density of the floor was similar. In the case of Particle Velocity, as the velocity decreases, the spray density of the central portion increases but decreases at a distance of 0.15m or more. From the analysis of the change in the size distribution function, it was found that an increase in the 𝛾 value increases the spray density of the central part, but the value at a remote location decreases. Compared to the result of applying the Gaussian distribution, the median value decreases dramatically when the uniform distribution is applied, but the value at the adjacent position increases. Conclusion: Variables related to the droplet properties of the FDS affect the spray density of the floor. Therefore, in order to increase the reliability of results before performing analyses such as fire suppression or cooling, a sufficient review of input variables is required.

Coal particle distribution inside fuel droplets of high loading CWM (고부하도 CWM 연료방울안에 존재하는 미분탄 분포)

  • 김성준;유영길
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.618-629
    • /
    • 1991
  • The purpose of this experiment is to understand the distribution of coal particles inside CWM droplet which is believed to be a very important factor controlling the flame stability. CWM slurry is atomized by an air assisted twin fluid nozzle. An experimental rig is designed and fabricated. The mean size of coal particle distribution in CWM slurry, atomizing air pressure, coal particle loading in slurry and sampling position inside spray are main experimental variables. The atomized CWM droplets are sampled on the thin white layer of magnesium oxide by the emergency sampling shutter. The sampled coal particles on magnesium oxide layers are collected into test tubes and dispersed completely by Ultra-Sonicator. The size distribution of coal particles inside droplets are measured by Coulter Counter. The presence of coal particle inside the impressions of droplets on magnesium oxide layer are investigated by photo technique. There are quite many droplets which do not have any coal particles. Those are just water droplets, not CWM droplets. The population ratio of droplets without coal particles to toal number of droplets is strongly affected by the mean size of coal particle distribution in slurry and this ration becomes bigger number as the mean size of coal particles be larger. The size distribution of coal particles inside CWM droplets is not even and depends on the size of droplet. Experimental results show that the larger CWM droplets has droplets has bigger mean value of particle size distribution. This trend becomes more evident as the atomizing air pressure is raised and the mean size of coal particles in CWM slurry is bigger. That is, the distribution of coal particles inside CWM dropolets is very much affected by the atomizing air pressure and the mean size of pulverized coal particles in CWM slurry.

Effect of Operating Condition of Airblast Atomizer on Twin spray characteristics and interaction (공기충돌형 연료분사장치의 운용조건이 이중분무특성과 간섭효과에 미치는 영향)

  • Park, S.G.;Han, J.S.;Kim, Y.;Park, J.B.
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.1
    • /
    • pp.9-14
    • /
    • 1999
  • The effect of operating condition was studied experimently on the characteristics of twin sprays ejected from two airblast atomizers, within the range of the mass air-fuel ratio 1.36∼3.54. Water and nitrogen gas were used as test fluids for the experiments. Spray characteristics of liquid spray were measured with measurement of mass distribution and instantaneous image of the spray cone. Experimental results show that the maximum specify of the distribution were lowered but distributed over the larger area when the ROA ratio increased, Center of mass position did not change with increasing water mass flow, Increase of the nozzle distance has an small effect on mass distribution of interaction area but distributed over the larger area. It was also conformed that the effect of interaction near central point of collision decreased with the increase of the ROA ratio on interaction area from comparison using superposition method

  • PDF

An Experimental Study on Startup Characteristics of a Center Body Diffuser for High Altitude Simulation (고공환경 모사용 Center Body Diffuser의 시동 특성에 관한 실험적 연구)

  • Yeon, Hae In;You, Isang;Kim, Wan Chan;Im, Ji Nyeong;Ko, Young Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.2
    • /
    • pp.93-102
    • /
    • 2016
  • An experimental study has been conducted to verify the startup characteristic of a Center Body Diffuser (CBD) for simulating a low pressure environment when at high altitudes. Vacuum chamber pressure and startup characteristics of the CBD were investigated according to various geometries of the center body structure by a cold gas flow test. The test results show that the startup pressure is lowest when the center body contraction angle is approximately $15^{\circ}$. The startup characteristic of the CBDs significantly improves when the diffuser inlet length ($L_d/D_d$) is decreasing and the divergence length ($L_s$) is increasing. Additionally, it is possible to simulate various high altitude, low pressure conditions for various rocket engines that have different nozzle expansion ratios by adjusting the center body's position inside the diffuser.