DOI QR코드

DOI QR Code

An Experimental Study on Startup Characteristics of a Center Body Diffuser for High Altitude Simulation

고공환경 모사용 Center Body Diffuser의 시동 특성에 관한 실험적 연구

  • Yeon, Hae In (Dept. of Aerospace Engineering, Chungnam Nat'l Univ.) ;
  • You, Isang (Dept. of Aerospace Engineering, Chungnam Nat'l Univ.) ;
  • Kim, Wan Chan (Dept. of Aerospace Engineering, Chungnam Nat'l Univ.) ;
  • Im, Ji Nyeong (Dept. of Aerospace Engineering, Chungnam Nat'l Univ.) ;
  • Ko, Young Sung (Dept. of Aerospace Engineering, Chungnam Nat'l Univ.)
  • 연해인 (충남대학교 항공우주공학과) ;
  • 유이상 (충남대학교 항공우주공학과) ;
  • 김완찬 (충남대학교 항공우주공학과) ;
  • 임지녕 (충남대학교 항공우주공학과) ;
  • 고영성 (충남대학교 항공우주공학과)
  • Received : 2015.09.08
  • Accepted : 2015.12.27
  • Published : 2016.02.01

Abstract

An experimental study has been conducted to verify the startup characteristic of a Center Body Diffuser (CBD) for simulating a low pressure environment when at high altitudes. Vacuum chamber pressure and startup characteristics of the CBD were investigated according to various geometries of the center body structure by a cold gas flow test. The test results show that the startup pressure is lowest when the center body contraction angle is approximately $15^{\circ}$. The startup characteristic of the CBDs significantly improves when the diffuser inlet length ($L_d/D_d$) is decreasing and the divergence length ($L_s$) is increasing. Additionally, it is possible to simulate various high altitude, low pressure conditions for various rocket engines that have different nozzle expansion ratios by adjusting the center body's position inside the diffuser.

본 연구에서는 고고도의 저압 환경을 모사하기 위한 CBD(Center Body Diffuser)의 시동특성에 대한 실험적 연구를 수행하였다. Center Body Diffuser의 형상을 다양하게 구성할 수 있도록 실험 장치를 설계/제작하여, 상온 유동 실험을 통해 CBD 형상에 따른 저압환경 구현 성능과 시동 특성을 관찰하였다. 실험 결과 센터바디의 수축각이 약 15도 일 때 시동압력이 가장 낮은 것을 확인하였다. 또한 디퓨저 입구부 길이($L_d/D_d$)가 감소할수록, 확산부 길이($L_s$)가 증가할수록 시동특성이 크게 향상되었다. 또한 디퓨저 입구부 길이($L_d/D_d$) 변화만을 통해 진공 챔버 압력을 조절할 수 있는 CBD만의 설비적 장점을 확인하였다.

Keywords

References

  1. Kim, J. R. and Kim, J.-S., 2014, "Numerical Study for Design of Center-body Diffuser," Journal of the Korean Society of Propulsion Engineers, Vol. 18, No. 3, pp. 34-39. https://doi.org/10.6108/KSPE.2014.18.3.034
  2. Stinnett, W.D, 1965, "Center Body Diffuser Study," Aec-Nasa Space Nuclear Propulsion Office, Report No. RN-S-0243.
  3. Schafer, K., Zimmermann, H. and Kruhsel, G., 2003, "Altitude Simulation Bench for VINCI Engine," 39th AIAA Joint Propulsion Conference and Exhibit 20-23, AIAA No. 2003-5043.
  4. Edwards, Daryl A., 2007, "Proposed Facility Modifications to support Propulsion System Testing under Simulated Space Conditions at Plum Brook Station's Spacecraft Propulsion Research Facility (B-2)," Thermal and Fluid Analysis Workshop, Cleveland, OH, United States, TFAWS, Vol. 20007, pp. 10-14.
  5. Hale, J.W. and Gobbell, W.C., 1966, "Diffuser Auxiliary Ejector Development for The Design of The J-3 LEM Descent Exhaust System," Arnold Engineering Development Center Arnold AFB TN, No. AEDC-TR-65-255.
  6. Chamberlain, J. and Olson, Rober E., 1960, "Development of an Exhaust Diffuser for Ground Testing Rocket Engines," Liquid Rocket and Propellants, American Rocket Society, pp. 99-118.
  7. Jeon, J. S., Kim, W. C., Yeoun, H. I., Kim M. S., Ko, Y. S. and Han, Y. M., 2014, "An Experimental Study on Performance of Second Throat Exhaust Diffusers of Different Configuration," Trans. Korean Soc. Mech. Eng. B, Vol. 38, No. 4, pp. 279-288. https://doi.org/10.3795/KSME-B.2014.38.4.279
  8. Park, J. H., Jeon, J. S., Yu, I. S., Ko, Y. S., Kim, S. J., Kim, Y. and Han, Y. M., 2011, "Performance Characteristics of Secondary Throat Supersonic Exhaust Diffusers," KSPE Fall Conference, pp. 641-644.
  9. Kim, J. H., Yeoun, H. I., Kim, M. S., Jeon, J. S., Ko, Y. S. and Kim, S. H., 2012, "An Experomental Study on Performance of Second Throat Exhaust Diffuser according to Diameter of Second Throat," KSPE Fall Conference, pp. 871-874.
  10. Annamalai, K., Visvanathan, K., Sriramulu, V. and Bhaskaran, K. A., 1998, "Evaluation of the Performance of Supersonic Exhaust Diffuser Using Scaled Down Models," Experimental Thermal and Fluid Science, Vol. 17, pp. 217-229. https://doi.org/10.1016/S0894-1777(98)00002-8
  11. Annamalai, K., Satyanarayana, T., Sriramulu, V. and Bhaskaran, K. A., 2000, "Development of Design Methods for Short Cylindrical Supersonic Exhaust Diffuser," Experiment in Fluids, Vol. 29, pp. 305-308. https://doi.org/10.1007/s003489900071
  12. James, E. A. J. and Theo, G. K., 2006, "Gas Dynamics," Pearson Prentice Hall.
  13. John, D. A., 2003, "Modern Compressible Flow," Mc Graw Hill.
  14. Sung, H. G., Yeom, H. W., Yoon, S. K., Kim, S. J. and Kim, J. G., 2010, "Investigation of Rocket Exhaust Diffusers for Altitude Simulation," Journal of Propulsion and Power, Vol. 26, No. 2, pp. 240-247. https://doi.org/10.2514/1.46226