DOI QR코드

DOI QR Code

Cumulative Distributions and Flow Structure of Two-Passage Shear Coaxial Injector with Various Gas Injection Ratio

2중 유로형 전단 동축 분사기의 기체 분사율에 따른 유동 및 입도분포

  • Lee, Inchul (School of Aerospace and Mechanical Engineering, Korea Aerospace Univ.) ;
  • Kim, Dohun (School of Aerospace and Mechanical Engineering, Korea Aerospace Univ.) ;
  • Koo, Jaye (School of Aerospace and Mechanical Engineering, Korea Aerospace Univ.)
  • 이인철 (한국항공대학교 항공우주및기계공학부) ;
  • 김도헌 (한국항공대학교 항공우주및기계공학부) ;
  • 구자예 (한국항공대학교 항공우주및기계공학부)
  • Received : 2013.01.15
  • Accepted : 2013.03.05
  • Published : 2013.07.01

Abstract

To verify the effect of inner- and outer-stage gas jets, a shear coaxial injector was designed to analyze the axial velocity profile and breakup phenomenon with an increase in the measurement distance. When the measurement position was increased to Z/d=100, the axial flow showed a fully developed shape due to the momentum transfer, aerodynamic drag effect, and viscous mixing. An inner gas injection, which induces a higher momentum flux ratio near the nozzle, produces the greater shear force on atomization than an outer gas injection. Inner- and Outer-stage gas injection do not affect the mixing between the inner and outer gas flow below Z/d=5. The experiment results showed that the main effect of liquid jet breakup was governed by the gas jet of an inner stage. As the nozzle exit of the outer-stage was located far from the liquid column, shear force and turbulence breaking up of the liquid jets do not fully affect the liquid column. In the case of an inner-stage gas injection momentum flux ratio within 0.84, with the increase in the outer gas momentum flux ratio, the SMD decreases. However, at an inner-stage gas jet momentum flux ratio over 1.38, the SMD shows the similar distribution.

전단 동축 분사기의 Inner-stage와 Outer-stage의 기체 분사 비율 변화에 따른 축방향 유동 분포 특성과 분무 분열 특성을 실험적으로 연구였다. 무차원 측정 거리를 Z/d=100까지 변화시킴에 따라 운동량 교환, 공기역학적 항력, 점성 혼합의 영향으로 완전 발달된 유동의 형태를 나타내었다. Inner-stage의 기체분사와 Outer-stage의 기체 분사의 영향은 Z/d=5 이내의 영역에서 간섭받지 않고 분무 초기에 Inner-stage에서 분사된 기체 전단력에 의해 분열됨을 파악할 수 있었으며, Z/d=10 이상의 영역에서 완전 발달된 유동으로 변화하며, 유동의 혼합이 진행됨을 관찰 할 수 있었다. Inner-stage의 운동량 플럭스 비 0.84 이내에서 Outer-stage의 운동량 플럭스 비가 증가함에 따라 SMD가 감소하는 경향을 나타내었으며, Inner-stage의 운동량 플럭스 비가 1.38 이상의 조건에서 SMD의 분포가 유사하게 나타나는 경향을 관찰할 수 있었다.

Keywords

References

  1. Glogowski, M., Bar-Gill, M., Puissant, C., KaItz, T., Milicic, M. and Micci, M., 1994, "Shear Coaxial Injector Instability Mechanisms," 30th Joint Propulsion Conference, Indianapolis, AIAA 1994-2774.
  2. Mayer, W. and Krulle, G., 1995,"Rocket Engine Coaxial Injector Liquid/Gas Interface Flow Phenomena," Journal of Propulsion and Power, Vol.11, No.3. pp. 513-518.
  3. Forstall, W. and Shapiro, A. H., 1950, "Momentum and Mass Transfer in Coaxial Gas Jets," Journal of Applied Mechanics, Vol. 17, No. 12, pp. 399-408.
  4. Williams, T. J., Ali, M. R. M. H. and Anderson, J. S., 1969, "Noise and Flow Characteristics of Coaxial Jets," Journal of Mechanical Engineering Science, Vol. 11, pp. 133-138. https://doi.org/10.1243/JMES_JOUR_1969_011_017_02
  5. Chandrasekhar, S., 1961, "Hydrodynamic and Hydromagnetic Stability," Clarendon Press, Oxford University Press, p. 652.
  6. Champagne, F. H., Wygnanski, I. J., 1971, "An Experimental Investigation of Coaxial Turbulent Jets," International Journal of Heat and Mass Transfer, Vol. 14, No. 9, pp. 1445-1464. https://doi.org/10.1016/0017-9310(71)90191-8
  7. Warda, H. A., Kassab, S. Z., Elshorbagy, K. A. and Elsaadawy, E. A., 1999, "An Experimental Investigation of the Near-Field Region of a Free Turbulent Coaxial Jet Using LDA," Flow Measurement and Instrumentation, Vol. 10, No. 1, pp. 15-26. https://doi.org/10.1016/S0955-5986(98)00041-7