• Title/Summary/Keyword: Nox4

Search Result 726, Processing Time 0.029 seconds

Structure and NO formation characteristics of oxidizer-controlled diffusion flames (산화제 제어 화염의 구조 및 NO 생성 특성)

  • Han, Ji-Woong;Lee, Chang-Eon
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.185-190
    • /
    • 2001
  • Numerical Study with detailed chemistry has been conducted to investigate the flame structure and NOx formation characteristics in oxygen-enhanced$(CH_4/O_2-N_2)$ and oxygen-enhanced-EGR$(CH_4/O_2-CO_2)$ counter diffusion flame with various strain rates. A small amount of $N_2$ is included in oxygen-enhanced-EGR combustion, in order to consider the inevitable $N_2$ contamination by $O_2$ production process or air infiltration. The results are as follows : In $CH_4/O_2-CO_2$ flame it is very important to adopt a radiation effect precisely because the effect of radiation changes flame structure significantly. In $CH_4/O_2-N_2$ flame special strategy to minimize NO emission is needed because it is very sensitive to a small amount of $N_2$. Special attention is needed on CO emission by flame quenching, because of increased CO concentration. Spatial NO production rate of oxygen-enhanced combustion is different from that of air and oxygen-enhanced-EGR combustion in that thermal mechanism plays a role of destruction as well as production. In case $CH_4/O_2-CO_2$ flame contains more than 40% $CO_2$ it is possible to maintain the same EINO as that of $CH_4/Air$ flame with accomplishing higher temperature than that of $CH_4/Air$ flame. EINO decreases with increasing strain rate, and those effects are augmented in $CH_4/O_2$ flame. Complementary study is needed with extending the range of strain rate variation.

  • PDF

Effect of Promoting Metal in Pt/Al2O3 Catalyst on Selective Catalytic Reduction of NO Using CH4 (증진제 첨가에 따른 Pt/Al2O3촉매의 CH4-SCR 반응특성 연구)

  • Won, Jong Min;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.28 no.1
    • /
    • pp.64-72
    • /
    • 2017
  • A series of Pt-based ${\gamma}-Al_2O_3$ catalysts promoted with several alkali and alkaline earth metals were prepared by a wet impregnation method. We confirmed that the addition of Na to $Pt/{\gamma}-Al_2O_3$ could cause a change in the oxidation state of Pt through an electronegative gap between Pt and Na atom, and increase the ratio of the metallic Pt. The metallic Pt species made by adding an optimum Na content improved the adsorption of NO species on the catalyst surface and restrained the oxidation of $CH_4$ to $CO_2$. When molar ratio of Na/Pt was 4.0, the highest catalytic activity could be obtained.

A Study on the Characteristics of PM1.0 Chemical Components Using a Real-time Aerosol Mass Spectrometer (실시간 에어로졸 질량분석기를 이용한 PM1.0의 화학적성분의 특성에 관한 연구)

  • Park, Jinsoo;Choi, Jinsoo;Kim, Hyunjae;Oh, Jun;Sung, Minyoung;Ahn, Joonyoung;Lee, Sangbo;Kim, Jeongho
    • Journal of the Korean Society of Urban Environment
    • /
    • v.18 no.4
    • /
    • pp.485-494
    • /
    • 2018
  • This study aims to identify the characteristics of oxidation and chemical composition of PM in winter season, 2017 at Incheon area. The mean concentration of air pollutants were $46{\pm}22{\mu}g/m^3-PM_{10}$, $29{\pm}18{\mu}g/m^3/-PM_{2.5}$, $5{\pm}3ppb-SO_2$, $0.56{\pm}0.24ppm-CO$, $21{\pm}13ppb-O_3$ and $28{\pm}17ppb-NO_2$, respectively. The dominant ion of the $PM_{1.0}$ chemical component were organic with $3.2{\mu}g/m^3$ and nitrate with $1.9{\mu}g/m^3$. The day and night variation of the $PM_{1.0}$ chemical components was higher in nighttime than those of daytime. The averaged nitrate oxidation rate (SOR) was 0.06 and sulfate oxidation rate was 0.11 during the field campaign. In the high mass loading period, nitrate oxidation rate (NOR) was up to 0.6 and also the nitrate in $PM_{1.0}$ was increased. The averaged ratio of $NO_x/SO_2$ was 8.7 and nitrate/sulfate was 3.1, respectively. In this results, the nitrate component in $PM_{1.0}$ was influenced by NOx from the stationary source as power plant and the mobile source around the measurement site.

Investigation on Diesel Injection Characteristics of Natural Gas-Diesel Dual Fuel Engine for Stable Combustion and Efficiency Improvement Under 50% Load Condition (천연가스-디젤 혼소 엔진의 50% 부하 조건에서 제동효율 및 연소안정성 개선을 위한 디젤 분무 특성 평가)

  • Oh, Sechul;Oh, Junho;Jang, Hyungjun;Lee, Jeongwoo;Lee, Seokhwan;Lee, Sunyoup;Kim, Changgi
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.3
    • /
    • pp.45-53
    • /
    • 2022
  • In order to improve the emission of diesel engines, natural gas-diesel dual fuel combustion compression ignition engines are in the spotlight. In particular, a reactivity controlled compression ignition (RCCI) combustion strategy is investigated comprehensively due to its possibility to improve both efficiency and emissions. With advanced diesel direct injection timing earlier than TDC, it achieves spontaneous reaction with overall lean mixture from a homogeneous mixture in the entire cylinder area, reducing nitrogen oxides (NOx) and particulate matter (PM) and improving braking heat efficiency at the same time. However, there is a disadvantage in that the amount of incomplete combustion increases in a low load region with a relatively small amount of fuel-air. To solve this, sensitive control according to the diesel injection timing and fuel ratio is required. In this study, experiments were conducted to improve efficiency and exhaust emissions of the natural gas-diesel dual fuel engine at low load, and evaluate combustion stability according to the diesel injection timing at the operation point for power generation. A 6 L-class commercial diesel engine was used for the experiment which was conducted under a 50% load range (~50 kW) at 1,800 rpm. Two injectors with different spray patterns were applied to the experiment, and the fraction of natural gas and diesel injection timing were selected as main parameters. Based on the experimental results, it was confirmed that the brake thermal efficiency increased by up to 1.3%p in the modified injector with the narrow-angle injection added. In addition, the spray pattern of the modified injector was suitable for premixed combustion, increasing operable range in consideration of combustion instability, torque reduction, and emissions level under Tier-V level (0.4 g/kWh for NOx).

Characteristics Diagnosis of Supersonic Air Plasma by 0.4 MW Class Segmented Type Arc Torch (0.4 MW급 분절형 아크 토치에 의한 초음속 공기 플라즈마의 특성 진단)

  • Kim, Min-Ho;Lee, Mi-Yeon;Choe, Chae-Hong;Kim, Jeong-Su;Seo, Jun-Ho;Hong, Bong-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.194-195
    • /
    • 2013
  • 초음속 공기 플라즈마 환경을 모사할 수 있는 0.4 MW급 Enhanced Huels형 초음속 공기 플라즈마 발생 장비가 2012년에 전북대학교에 설치 완료되었다. 초음속 공기 플라즈마 시험장비는 대기권으로 reentry 할 수 있는 비행체의 열차폐체 시험평가를 주목적으로 개발되었으며, 핵융합장치용 고온 내열체 소재개발에도 활용될 예정이다. 분절형 아크 플라즈마 토치는 전극부식에 의한 오염도를 적으면서 고출력의 안정적인 플라즈마를 발생시키며, 일반적인 직류 토치로는 얻을 수 없는 초고엔탈피 플라즈마 열유동을 얻을 수 있는 특징이 있다. 구축된 장비는 최대 직류 출력 1,200 kW의 DC 전원공급장치, 0.4 MW급의 분절형 아크 플라즈마 토치, ${\phi}1.5m{\times}2m$ 크기의 진공쳄버, 1 MW의 냉각 능력을 갖춘 디퓨저와 열교환기, 진공 용량 $100m^3$/min의 진공펌프 9대, 88 g/s의 공기유량에서 NOx를 50,000 ppm에서 100 ppm으로 저감할 수 있는 후처리 시스템, 4 bar 15 g/s의 공기를 공급할 수 있는 가스 공급장치, 30 bar 600 lpm의 저전도수와 4 bar 560 lpm의 일반수를 공급할 수 있는 냉각수 공급장치로 구성되어 있다. 초음속 공기 플라즈마의 발생 특성을 시험하기 위해 플라즈마 발생 조건으로 토치공급전력 350 kW와 410 kW, 토치 공기 공급 유량 16.3 g/s, 토치 내부압력 3.9~4.2 bar, 챔버압력 40 mbar으로 시험을 수행하였다. 발생된 플라즈마 상태를 진단하기 위해 속도는 쇄기 탐침기, 열유속은 Gardon 게이지, 엔탈피와 토치 효율은 토치의 공급전력과 냉각수에 의한 손실 전력으로 각각 측정하였다.

  • PDF

Chemical Characteristics of Fine Aerosols During ABC-EAREX2005 (ABC-EAREX2005 미세 에어러솔의 화학적 특성)

  • Song, M.;Lee, M.;Moon, K.J.;Han, J.S.;Kim, K.R.;Lee, G.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.5
    • /
    • pp.604-613
    • /
    • 2006
  • The chemical composition of $PM_{2.5}$ such as ${SO_4}^{2-},\;{NO_3}^-,\;Cl^-,\;{NH_4}^+,\;Ca^{2+},\;K^+,\;Na^+,\;Mg^{2+}$, OC, and EC and the concentrations of reactive trace gases including $O_3,\;CO,\;NOx,\;SO_2,\;and\;H_2O_2$ were measured at Gosan in Jeju Island during March $13{\sim}30$, as a part of the Atmospheric Brown Clouds-East Asian Regional Experiment 2005(ABC-EAREX2005). The average mass concentrations of $PM_{2.5}$ was 27.3 ${\mu}g/m^3$, of which OC showed the highest concentration as 4.22 ${\mu}g/m^3$ and nss ${SO_4}^{2-}$ was the second highest as 3.34 ${\mu}g/m^3$. During that period, average concentrations of CO and $O_3$ was about 300 ppbv and 56 ppbv, respectively. For the whole experiment, the correlations of CO with ${SO_4}^{2-}$ and EC were very good, which suggests that CO can be used as tracer for the formation of fine aerosols. Several pollution and dust episodes were identified by the enhancement of CO, OC, EC, nss ${SO_4}^{2-},\;or\;Ca^{2+}$ concentrations or their ratios. In conjunction with factor analysis, air trajectory analysis, and comparison with emission inventories, these results indicate the spring aerosols collected at Gosan was strongly influenced by Asian outflows.

Development of Oxy-fuel Combustor for the Underwater SMV(Sub-Merged Vaporizer) (수중연소식 천연가스기화기(SMV)용 순산소 연소기 개발)

  • Sohn, Whaseung;Kim, Hoyeon;Jeong, Youngsik
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.253-254
    • /
    • 2014
  • 지구온난화 문제는 한국가의 문제가 아니라 인류의 문제로 대두되어 많은 이에대한 많은 연구가 이루어 지고 있다. 지구온난화의 주 대상물질인 화석연료로부터 연소시 발생하는 이산화탄소를 감축하기위한 많은 규제와 노력이 요구된다. CCS(Carbon Capture & Storage)란 화석연료로 부터 연소시 대기 중으로 배출되는 온실가스($CO_2$)를 포집하여 재생 또는 지중, 해양에 저장하는 기술로서 국가녹색성장 핵심기술중의 하나로 분류되며, $CO_2$ 회수방안, 저장, 처리관련 연구를 비롯하여 국내외 적으로 활발한 연구가 이루어 지고 있다. 또한 순산소 연소기술을 통한 $CO_2$ 회수, 처리기술은 연료의 산화제를 공기대신 순도 95% 이상의 고농도 산소를 이용하여 순산소연소를 하며, 이때 발생하는 배가스의 대부분은 $CO_2$와 수증기로 구성되어 있다. 발생된 배가스의 약 70~80%를 다시 연소실로 재순환시켜 연소기의 열적 특성에 적절한 연소가 가능하도록 최적화함과 동시에 배가스의 $CO_2$ 농도를 80% 이상으로 농축시켜 회수를 용이하게 하며, 동시에 공해물질은 NOx 발생량을 10ppM 이하로 줄일 수 있는 기술이다. 천연가스를 생산하는 LNG기지에서 연소에 의한 이산화탄소를 발생시키는 기기로는 수중연소식기화기(SMV ; Submerged Combustion Vaporizer)를 들 수 있다. SMV는 버너를 이용하여 $-162^{\circ}C$ LNG를 $10^{\circ}C$의 LN로 기화시키는 설비로서 특히 동절기에 작동시키며 $CO_2$를 배출시키는 연소기다. 본 연구에서는 수중연소식 SMV에 순산소 연소방식을 적용하여 천연가스와 산소를 연소시키므로서 발생되는 $CO_2$를 LNG냉열을 이용 액체화 시켜 회수하는 연구를 수행하고 있다. 내용중에 수중연 소식 SMV에 대한 순산소 연소기를 개발하는 연구를 수행하였으며, 실제 SMV의 1/10크기, 열량기준 1/900로 모형을 제작하여 실험하였다. 연소기 노즐 은 직경 0.6mm, 배가스가 수조내에서 48개의 노즐을 제작하였다. 실험결과 일정량 이상의 $CO_2$ EGR율이 일정 값 이상이 되면 화염의 길이가 공기/NG 화염 길이와 큰 차이가 없었으며 $CO_2$ EGR율이 100%이상에서는 $CO_2$ EGR율 증가에 따른 화염길이 변화는 크게 나타나지 않았다. CO 배출 농도는 공기/NG 연소의 경우보다 높게 나타났으며, ${\lambda}$가 1.4보다 높은 조건에서는 측정되지 않았다. NOx의 배출 농도는 약 1~8ppm으로 나타났다.

  • PDF

Catalytic Decomposition of NF3 by Thermal Decomposition and Hydrolysis of γ-Al2O3 (γ-Al2O3 촉매상에서 열분해와 가수분해에 의한 NF3 촉매분해 특성)

  • Kim, Yong Sul;Park, No-Kuk;Lee, Tae Jin
    • Applied Chemistry for Engineering
    • /
    • v.26 no.2
    • /
    • pp.154-158
    • /
    • 2015
  • In this study, the catalytic activity of ${\gamma}-Al_2O_3$ was investigated for the decomposition of $NF_3$. Reactions for $NF_3$ decomposition were carried out in the range of reaction temperature of $330{\sim}730^{\circ}C$ and GHSV of $3,000{\sim}15,000mL/g-cat{\cdot}h$ in a fixed-bed catalytic reactor system. Thermal decomposition of $NF_3$ was also performed in order to compare with the catalytic decomposition of $NF_3$. The conversion of $NF_3$ by the catalytic decomposition at $400^{\circ}C$ was four times higher than that of the thermal decomposition. It was confirmed that the reaction behavior of $NF_3$ over ${\gamma}-Al_2O_3$ exhibited two reaction pathways in the presence of steam. Fluorine in $NF_3$ over ${\gamma}-Al_2O_3$ was chemically absorbed to $AlF_3$ by the gas-solid reaction in the absence of steam. The catalytic decomposition of $NF_3$ occurred by hydrolysis with steam. It was also confirmed by FT-IR analysis that $NF_3$ was completely decomposed to NOx and HF above $500^{\circ}C$.

Development of Coke Breeze Combustion Technology in the Calcining Rotary Kiln (Rotary Kiln 식석회소성로에서의 분코크스 연소 기술)

  • Kim, J.G.;Cho, H.C.;Kim, Y.W.
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.41-45
    • /
    • 2004
  • A dust injection system was developed for the lime calcining rotary kiln for the coke dust from the coke dry quenching(CDQ) facility to be used as a fuel. The CDQ dust was injected with the gaseous fuel through the hole in the burner. In order to prevent the spot heating large particles should be removed from dust and dust should be injected as fast as possible so that particle combustion lasts as long as possible without precipitation. This is especially necessary when dust is burned together with gaseous fuel because the gaseous fuel can not go so far and in addition dust combustion aggravates hot spot heating. In this research a rotation drum screen was used to remove particles with diameter larger than 4mm and dust injection speed was 40m/sec. And the burner was adjusted not to use swirl that hinders flame go far away. With these measures scale generation iside the kiln could be reduced to be negligible and in addition NOx emission could be reduced from 150ppm to 20ppm. The fuel reduction was about 85Mcal/T-lime.

  • PDF

A Numerical Study on Combustion Characteristics of Single Cylinder Engine Fueled with DME (DME를 사용한 단기통 엔진의 연소특성에 관한 수치해석적 연구)

  • Kim, Hyun-Chul;Kang, Woo;Na, Byung-Chul;Kim, Myung-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.39-48
    • /
    • 2006
  • In this research, in order to study the spray, combustion, and emission characteristics of the common rail DME engine, the target engine was disassembled, and 3D CAD file was constructed using a 3D measurement machine and a rapid prototyping machine. Using the obtained 3D geometry, fine moving meshes are generated, and three dimensional non-steady turbulence flow field and combustion phenomenon including spray were numerically analyzed. As a result, IMEP of DME and diesel in medium and high speed revolution showed similar performance. As the DME fuel start to burn in spray area, the vaporized fuel rapidly spreads squish area in low speed revolution. In the case of DME engine, CO and NOx are relatively consistent with experiment results. It was found that the break-up, evaporation, collision model of DME fuel need to be properly adjusted through matching the characteristics of fuel and injector for further improvement.