Browse > Article
http://dx.doi.org/10.14478/ace.2016.1103

Effect of Promoting Metal in Pt/Al2O3 Catalyst on Selective Catalytic Reduction of NO Using CH4  

Won, Jong Min (Department of Environmental Energy Engineering, general graduate school, Kyonggi University)
Hong, Sung Chang (Department of Environmental Energy Engineering, general graduate school, Kyonggi University)
Publication Information
Applied Chemistry for Engineering / v.28, no.1, 2017 , pp. 64-72 More about this Journal
Abstract
A series of Pt-based ${\gamma}-Al_2O_3$ catalysts promoted with several alkali and alkaline earth metals were prepared by a wet impregnation method. We confirmed that the addition of Na to $Pt/{\gamma}-Al_2O_3$ could cause a change in the oxidation state of Pt through an electronegative gap between Pt and Na atom, and increase the ratio of the metallic Pt. The metallic Pt species made by adding an optimum Na content improved the adsorption of NO species on the catalyst surface and restrained the oxidation of $CH_4$ to $CO_2$. When molar ratio of Na/Pt was 4.0, the highest catalytic activity could be obtained.
Keywords
SCR; NOx; $CH_4$; valence state; electro-negative;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. A. Comelli, S. A. Canavese, C. A. Querini, and N. S. Figoli, Coke deposition on platinum promoted $WO_{x}-ZrO_2$ during n-hexane isomerization, Appl. Catal. A, 182, 275-283 (1999).   DOI
2 S. Djerad, M. Crocoll, S. Kureti, L. Tifouti, and W. Weisweiler, Effect of oxygen concentration on the NOx reduction with ammonia over $V_2O_5-WO_3/TiO_2$ catalyst, Catal. Today, 208, 208-214 (2006).
3 J. Chen and R. Yang, Mechanism of poisoning of the $V_2O_5/TiO_2$ catalyst for the reduction of NO by $NH_3$, J. Catal., 125, 411-420 (1990).   DOI
4 K. N. Rao and H. P. Ha, $SO_2$ promoted alkali metal doped $Ag/Al_2O_3$ catalysts for $CH_4$-SCR of NOx, Appl. Catal. A, 433, 162-169 (1992).
5 F. Lonyi, J. Valyon, L. Gutierrez, M. A. Ulla, and E. A. Lombardo, The SCR of NO with $CH_4$ over Co-, Co,Pt-, and H-mordenite catalysts, Appl. Catal. B, 73, 1-10 (2007).   DOI
6 J. M. Gsrcia-Cortes, J. Perez-Ramirez, J. N. Rouzaud, A. R. Vaccaro, M. J. Illan-omez, and C. Salinas-Martinez de Lecea, On the structure sensitivity of deNOx HC-SCR over Pt-beta catalysts, On the structure sensitivity of deNOx HC-SCR over Pt-beta catalysts, J. Catal., 218, 111-122 (2003).   DOI
7 M. Konsolakisa, I. V. Yentekakisa, G. Pekridisb, N. Kaklidisb, A. C. Psarrasc, and G. E. Marnellos, Insights into the role of $SO_2\;and\;H_2O$ on the surface characteristics and de-$N_2O$ efficiency of $Pd/Al_2O_3$ catalysts during $N_2O$ decomposition in the presence of $CH_4$ and $O_2$ excess, Appl. Catal. B, 138, 191-198 (2013).
8 H. Zhanga, L. Li, N. Li, A. Wang, and X. Wang, In situ FT-IR investigation on the selective catalytic reduction of NO with $CH_4$ over Pd/sulfated alumina catalyst, Appl. Catal. B, 110, 171-177 (2010).
9 F. Lonyi, H. E. Solt, J. Valyona, A. Boix, and L. B. Gutierrez, The activation of NO and $CH_4$ for NO-SCR reaction over In- and Co-containing H-ZSM-5 catalysts, J. Mol. Catal. A, 345, 75-80 (2011).   DOI
10 P. J. Smeets, Q. Meng, S. Corthals, H. Leeman, and R. A. Schoonheydt, Co-ZSM-5 catalysts in the decomposition of $N2_O$ and the SCR of NO with $CH_4$: Influence of preparation method and cobalt loading, Appl. Catal. B, 84, 505-513 (2008).   DOI
11 T. V. Myronyuk and S. N. Orlyk, Role of redox and acidic properties of $CoO/ZrO_2(SO_4\;^{2-})$ catalysts in $CH_4$-SCR of NO, Catal. Today, 119, 152-155 (2007).   DOI
12 R. Burch and T. C. Watling, The effect of promoters on $Pt/Al_2O_3$ catalysts for the reduction of NO by $C_3H_6$ under lean-burn conditions, Appl. Catal. B, 11, 207-216 (1997).   DOI
13 S. S. Kim, S. H. Choi, S. M. Lee, and S. C. Hong, Enhanced catalytic activity of $Pt/Al_2O_3$ on the $CH_4$ SCR, J. Ind. Eng. Chem., 18, 272-276 (2012).   DOI
14 P. Vernoux, A.-Y. L. L. Cocq, and F. Gaillard, Effect of the addition of Na to $Pt/Al_2O_3$ catalysts for the reduction of NO by $C_3H_8\;and\;C_3H_6$ under lean-burn conditions, J. Catal., 219, 247-257 (2003).   DOI
15 M. C. Campa, V. Indovinaa, and D. Pietrogiacomi, The selective catalytic reduction of $N_2O\;with\;CH_4$ on Na-MOR and Na-MFI exchanged with copper, cobalt or manganese, Appl. Catal. B, 111, 90-95 (2012).
16 Y. Yazawa, H. Yoshida, S. Komai, and T. Hattori, The additive effect on propane combustion over platinum catalyst: control of the oxidation-resistance of platinum by the electronegativity of additives, Appl. Catal. A, 233, 113-124 (2002).   DOI
17 M. Chen, Z. L. Pei, C. Sun, L. S. Wen, and X. Wang, Formation of Al-doped ZnO films by dc magnetron reaction sputtering, Mater. Lett., 48, 194-198 (2001).   DOI
18 R. Burch and T. C. Watling, The difference between alkanes and alkenes in the reduction of NO by hydrocarbons over Pt catalysts under lean-burn conditions, Catal. Lett., 43, 19-23 (1997).   DOI
19 A. S. Ivanova, E. M. Slavinskaya, R. V. Gulyaev, V. I. Zaikovskii, O. A. Stonkus, I. G. Danilova, L. M. Plyasova, I. A. Polukhina, and A. I. Boronin, Metal-support interactions in $Pt/Al_2O_3\;and\;Pd/Al_2O_3$ catalysts for CO oxidation, Appl. Catal. B, 97, 57-71 (2010).   DOI
20 C. G. Vayenas and S. Brosda, C. Pliangos, Rules and mathematical modeling of electrochemical and chemical promotion: 1. Reaction classification and promotional rules, J. Catal., 203, 329-350 (2001).   DOI
21 N. D. Lang, S. Holloway, and J. K. Norskov, Electrostatic adsorbate-adsorbate interactions: The poisoning and promotion of the molecular adsorption reaction, Surf. Sci., 150, 24-38 (1985).   DOI
22 D. Duprez, M. Hadjaissa, and J. Barbier, Effect of steam on the coking of platinum catalysts I. Inhibiting effect of steam at low partial pressure for the dehydrogenation of cyclopentane and the coking reaction, Appl. Catal., 49, 67-74 (1989).   DOI