• Title/Summary/Keyword: Novel yeast species

Search Result 28, Processing Time 0.026 seconds

Identification of a Newly Isolated Protease-producing Bacterium, Bacillus subtilis FBL-1, from Soil (토양으로부터 새로이 분리된 단백질 분해효소 생산 미생물 Bacillus subtilis FBL-1의 동정)

  • Kim, Mina;Si, Jin-Beom;Wee, Young-Jung
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.2
    • /
    • pp.185-193
    • /
    • 2016
  • A novel proteolytic bacterium was isolated from soil at Yeungnam University, South Korea. The strain, named FBL-1, was rod-shaped with a smooth surface. Biolog and API 50CHB test results revealed that strain FBL-1 was a Bacillus species. Based on 16S rDNA sequencing and chemotaxonomic characterization, the strain was identified as Bacillus subtilis because it had the highest homology with Bacillus subtilis subsp. subtilis NCIB 3610 (99.5%). In liquid culture at 37℃ with shaking at 200 rpm, fructose and yeast extract were found to be the best carbon and nitrogen sources, respectively, for cell growth and protease production. The highest protease activity (451.640 U/ml) was obtained when the strain was cultured in medium containing 20 g/l of fructose and 5 g/l of yeast extract. Although further studies are needed to characterize the protease and enhance its activity, the newly isolated protein-degrading B. subtilis FBL-1 can be applicable for the production of peptides and for the degradation of proteins in various industries.

Isolation and Determination of Microbiological Characteristics of Unrecorded Wild Yeasts from Waters and Soils of Haegeumgang in the Southern Sea, and from Namdaecheon and Geumsancheon Upstream of Geumgang, Korea (해금강과 금강상류 남대천 및 금산천 주변으로부터 야생효모의 분리 및 국내 미기록 효모들의 균학적 특성)

  • Jeong-Su Moon;Hyang-Burm Lee;Jong-Soo Lee
    • The Korean Journal of Mycology
    • /
    • v.50 no.3
    • /
    • pp.149-160
    • /
    • 2022
  • The goal of this study was to investigate the diversity of wild yeasts from the waters and soils of Haegeumgang in Gyungsangnam-do, and Namdaecheon and Geumsancheon in upstream of Geumgang, Korea and to characterize any previously unrecorded wild yeast strains. In total, 52 strains comprising 22 different species of wild yeasts were isolated from 35 samples obtained from Haegeumgang. Forty three and sevent nine wild yeast strains were isolated from 90 samples taken from Namdaecheon and Geumsancheon, respectively. Among the total 174 isolated wild yeast strains, 4 strains, i.e., Exobasidium rhododendri HGG10-5 (NNIBR2022633FG1), Udeniomyces pyricola NDC29-1 (NNIBR2022633FG2), Diddensiella caesifluorescens GSC2-2 (NNIBR2022633FG5) and Pichia scaptomyzae BAC2-3 (NNIBR2022633FG4) were previously unrecorded yeasts were oval or spherical in shape, only Pichia scaptomyzae BAC 2-3 formed ascospores. Three strains with the exception of Udeniomyces pyricola NDC 29-1 grew well in vitamin-free medium and Exobasidium rhododendri HGG 10-5 grew well in YPD medium containing 10% NaCl. All four novel strains assimilated fructose, lactose, raffinose, starch and xylose.

New Species of the Genus Metschnikowia Isolated from Flowers in Indonesia, Metschnikowia cibodasensis sp. nov.

  • Sjamsuridzal, Wellyzar;Oetari, Ariyanti;Nakashima, Chiharu;Kanti, Atit;Saraswati, Rasti;Widyastuti, Yantyati;Ando, Katsuhiko
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.7
    • /
    • pp.905-912
    • /
    • 2013
  • A novel species, Metschnikowia cibodasensis, is proposed to accommodate eight strains (ID03-$0093^T$, ID03-0094, ID03-0095, ID03-0096, ID03-0097, ID03-0098, ID03-0099, and ID03-0109) isolated from flowers of Saurauia pendula, Berberis nepalensis, and Brunfelsia americana in Cibodas Botanical Garden, West Java, Indonesia. The type strain of M. cibodasensis is ID03-$0093^T$ (= NBRC $101693^T$ =UICC $Y-335^T$ = BTCC-$Y25^T$). The common features of M. cibodasensis are a spherical to ellipsoidopedunculate shaped ascus, which contains one or two needle-shaped ascospores, and lyse at maturity. Asci generally develop directly from vegetative cells but sometimes from chlamydospores. The neighbor-joining tree based on the D1/D2 domain of nuclear large subunit (nLSU) ribosomal DNA sequences strongly supports that M. cibodasensis (eight strains) and its closest teleomorphic species, M. reukaufii, are different species by a 100% bootstrap value. The type strain of M. cibodasensis, ID03-$0093^T$, differed from M. reukaufii NBRC $1679^T$ by six nt (five substitutions and one deletion) in their D1/D2 region of nLSU rDNA, and by 18 nt (five deletions, four insertions, and nine substitutions) in their internal transcribed spacer regions of rDNA, respectively. Four strains representative of M. cibodasensis (ID03-$0093^T$, ID03-0095, ID03-0096, and ID03-0099) showed a mol% G+C content of $44.05{\pm}0.25%$, whereas that of M. reukaufii NBRC $1679^T$ was 41.3%. The low value of DNA-DNA homology (5-16%) in four strains of M. cibodasensis and M. reukaufii NBRC $1679^T$ strongly supported that these strains represent a distinct species.

The Novel Biological Action of Antimicrobial Peptides via Apoptosis Induction

  • Cho, Jaeyong;Hwang, In-Sok;Choi, Hyemin;Hwang, Ji Hong;Hwang, Jae-Sam;Lee, Dong Gun
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.11
    • /
    • pp.1457-1466
    • /
    • 2012
  • Antimicrobial peptides (AMPs) exert antimicrobial activity against Gram-positive and Gram-negative bacteria, fungi, and viruses by various mechanisms. AMPs commonly possess particular characteristics by harboring cationic and amphipathic structures and binding to cell membranes, resulting in the leakage of essential cell contents by forming pores or disturbing lipid organization. These membrane disruptive mechanisms of AMPs are possible to explain according to the various structure forming pores in the membrane. Some AMPs inhibit DNA and/or RNA synthesis as well as apoptosis induction by reactive oxygen species (ROS) accumulation and mitochondrial dysfunction. Specifically, mitochondria play a major role in the apoptotic pathway. During apoptosis induced by AMPs, cells undergo cytochrome c release, caspase activation, phosphatidylserine externalization, plasma or mitochondrial membrane depolarization, DNA and nuclei damage, cell shrinkage, apoptotic body formation, and membrane blebbing. Even AMPs, which have been reported to exert membrane-active mechanisms, induce apoptosis in yeast. These phenomena were also discovered in tumor cells treated with AMPs. The apoptosis mechanism of AMPs is available for various therapeutics such as antibiotics for antibiotic-resistant pathogens that resist to the membrane active mechanism, and antitumor agents with selectivity to tumor cells.

Antimicrobial Activity of the Synthetic Peptide Scolopendrasin II from the Centipede Scolopendra subspinipes mutilans

  • Kwon, Young-Nam;Lee, Joon Ha;Kim, In-Woo;Kim, Sang-Hee;Yun, Eun-Young;Nam, Sung-Hee;Ahn, Mi-Young;Jeong, MiHye;Kang, Dong-Chul;Lee, In Hee;Hwang, Jae Sam
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.10
    • /
    • pp.1381-1385
    • /
    • 2013
  • The centipede Scolopendra subpinipes mutilans is a medicinally important arthropod species. However, its transcriptome is not currently available and transcriptome analysis would be useful in providing insight into a molecular level approach. Hence, we performed de novo RNA sequencing of S. subpinipes mutilans using next-generation sequencing. We generated a novel peptide (scolopendrasin II) based on a SVM algorithm, and biochemically evaluated the in vitro antimicrobial activity of scolopendrasin II against various microbes. Scolopendrasin II showed antibacterial activities against gram-positive and -negative bacterial strains, including the yeast Candida albicans and antibiotic-resistant gram-negative bacteria, as determined by a radial diffusion assay and colony count assay without hemolytic activity. In addition, we confirmed that scolopendrasin II bound to the surface of bacteria through a specific interaction with lipoteichoic acid and a lipopolysaccharide, which was one of the bacterial cell-wall components. In conclusion, our results suggest that scolopendrasin II may be useful for developing peptide antibiotics.

Studies on Intracellular Functions of the mas3 Gene in the Fission Yeast, Schizosaccharomyces pombe (분열형 효모에서 mas3 유전자의 세포내 기능 연구)

  • Hwang Mi Ra;Cha Jae Young;Shin Sang Min;Park Jong Kun
    • Journal of Life Science
    • /
    • v.15 no.1 s.68
    • /
    • pp.124-131
    • /
    • 2005
  • The regulation of gene expression plays an important rolet in cell cycle controls. In this study, a novel $mas3^+$ (mitosis associated protein) gene, a homolog of human SMARCADl, was isolated and characterized from a fission yeast Schizosaccharomyces pombe. The overall homology between the helicase proteins of the two species is $87\%$. This DEAD/H box-containing molecule has seven highly conserved sequence regions that allow us to place it in the SNF2 family of the helicase superfamily. Knock-out cell of $mas3^+$ gene was constructed using kanMX6 as a selection marker. Survival of mas3 null mutant exposed to UV or MMS was similar to those of wild type cells. $mas3^+$ expression was lowest at $G_2$ and gradually increased. Cytokinesis of mas3 null mutant was abnormal at $26^{\circ}C\;and\;35^{\circ}C$ and a large number of multi-septate cells were produced. These results indicate that the $mas3^+$ is involved in cytokinesis and cell shape control.

Isolation, Characterization, and Molecular Cloning of the cDNA Encoding a Novel Phytase from Aspergillus niger 113 and High Expression in Pichia pastoris

  • Xiong, Ai Sheng;Yao, Quan-Hong;Peng, Ri-He;Li, Xian;Fan, Hui-Qin;Guo, Mei-Jin;Zhang, Si-Liang
    • BMB Reports
    • /
    • v.37 no.3
    • /
    • pp.282-291
    • /
    • 2004
  • Phytases catalyze the release of phosphate from phytic acid. Phytase-producing microorganisms were selected by culturing the soil extracts on agar plates containing phytic acid. Two hundred colonies that exhibited potential phytase activity were selected for further study. The colony showing the highest phytase activity was identified as Aspergillus niger and designated strain 113. The phytase gene from A. niger 113 (phyI1) was isolated, cloned, and characterized. The nucleotide and deduced amino acid sequence identity between phyI1 and phyA from NRRL3135 were 90% and 98%, respectively. The identity between phyI1 and phyA from SK-57 was 89% and 96%. A synthetic phytase gene, phyI1s, was synthesized by successive PCR and transformed into the yeast expression vector carrying a signal peptide that was designed and synthesized using P. pastoris biased codon. For the phytase expression and secretion, the construct was integrated into the genome of P. pastoris by homologous recombination. Over-expressing strains were selected and fermented. It was discovered that ~4.2 g phytase could be purified from one liter of culture fluid. The activity of the resulting phytase was 9.5 U/mg. Due to the heavy glycosylation, the expressed phytase varied in size (120, 95, 85, and 64 kDa), but could be deglycosylated to a homogeneous 64 kDa species. An enzymatic kinetics analysis showed that the phytase had two pH optima (pH 2.0 and pH 5.0) and an optimum temperature of $60^{\circ}C$.

In vitro response of rat microglia and human polymorphonuclear cells (PMN) to immunoactive compounds

  • Lombardi, Valter RM;Eetcheverria, Ignacio;Fernandez-Novoa, Lucia;Diaz, Joaquin;Seoane, Silvia;Cacabelos, Ramon
    • Advances in Traditional Medicine
    • /
    • v.5 no.3
    • /
    • pp.216-230
    • /
    • 2005
  • Although the field of study in immune enhancing compounds is relatively new, natural products from plants represent a rich and promising source of novel molecules with immunomodulating properties, Microglial cells, the main immune effector cells of the brain, usually display a ramified morphology and low expression levels of immunologically relevant antigens such as MHC class I and class II. Since any compound which participates in activation of phagocytic cells contributes to the production of potentially toxic factors, the search for convenient in vitro test-systems and study of mechanisms of action of these agents are of great interest. Human blood polymorphonuclear (PMN) cells and primary microglial cells isolated from Sprague-Dawley rats were used as cellular screening tests for study of phagocytosis-stimulating action of immunomodulating agents. Numbers of phagocytic activity were evaluated by the phagocyte ingestion of yeast cells and NO-synthase activity, nitrite production, and nitroblue tetrazolium test were determined after phagocyte stimulation. It was possible to demonstrate that indexes of phagocytic activity can be used as quantitative indicators for measurement immunomodulating activity. As a positive control, Zymosan A-induced phagocytosis in both PMN cells and primary microglial cells was used. $IFN-{\gamma}$ (0.1 -1 U/ml) stimulated phagocytosis in PMN cells 1.2 times after 2 - 3 h incubation, although at higher concentrations (10 - 100 U/ml) it strongly inhibited phagocytosis. In a similar way, at higher concentrations, $IFN-{\gamma}$ (100 - 500 U/ml) suppressed phagocytosis in zymosan-A stimulated microglial cells. When Polypodium leucotomus, cambricum and vulgare extracts were tested alone, increased levels of phagocytosis were observed in PMN. In addition, microglial cells showed both increased phagocytosis and MHC class-II antigen expressions. Surprisingly, when PMN and microglia were treated with a combination of Polypodium and $IFN-{\gamma}$, phagocytosis was not inhibited. We did not find changes in NO-synthase activity and nitrite production in both microglia and PMN cells activated by different immunomodulating agents. These results indicate that primary microglial cell cultures as well as human PMN cells can provide reproducible quantitative results in screening phagocytic activity of different immunoactive compounds. Furthermore, both inhibitory or activation mechanisms might be studied using these in vitro experimental approaches.