• Title/Summary/Keyword: Novel reliability cost

Search Result 53, Processing Time 0.034 seconds

Distribution System Reconfiguration Considering Customer and DG Reliability Cost

  • Cho, Sung-Min;Shin, Hee-Sang;Park, Jin-Hyun;Kim, Jae-Chul
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.486-492
    • /
    • 2012
  • This paper presents a novel objective function for distribution system reconfiguration for reliability enhancement. When islanding operations of distributed generators is prohibited, faults in the feeder interrupt the operation of distributed generators. For this reason, we include the customer interruption cost as well as the distributed generator interruption cost in the objective function in the network reconfiguration algorithm. The network reconfiguration in which genetic algorithms are used is implemented by MATLAB. The effect of the proposed objective function in the network reconfiguration is analyzed and compared with existing objective functions through case studies. The network reconfiguration considering the proposed objective function is suitable for a distribution system that has a high penetration of distributed generators.

Reliability-aware service chaining mapping in NFV-enabled networks

  • Liu, Yicen;Lu, Yu;Qiao, Wenxin;Chen, Xingkai
    • ETRI Journal
    • /
    • v.41 no.2
    • /
    • pp.207-223
    • /
    • 2019
  • Network function virtualization can significantly improve the flexibility and effectiveness of network appliances via a mapping process called service function chaining. However, the failure of any single virtualized network function causes the breakdown of the entire chain, which results in resource wastage, delays, and significant data loss. Redundancy can be used to protect network appliances; however, when failures occur, it may significantly degrade network efficiency. In addition, it is difficult to efficiently map the primary and backups to optimize the management cost and service reliability without violating the capacity, delay, and reliability constraints, which is referred to as the reliability-aware service chaining mapping problem. In this paper, a mixed integer linear programming formulation is provided to address this problem along with a novel online algorithm that adopts the joint protection redundancy model and novel backup selection scheme. The results show that the proposed algorithm can significantly improve the request acceptance ratio and reduce the consumption of physical resources compared to existing backup algorithms.

A novel evidence theory model and combination rule for reliability estimation of structures

  • Tao, Y.R.;Wang, Q.;Cao, L.;Duan, S.Y.;Huang, Z.H.H.;Cheng, G.Q.
    • Structural Engineering and Mechanics
    • /
    • v.62 no.4
    • /
    • pp.507-517
    • /
    • 2017
  • Due to the discontinuous nature of uncertainty quantification in conventional evidence theory(ET), the computational cost of reliability analysis based on ET model is very high. A novel ET model based on fuzzy distribution and the corresponding combination rule to synthesize the judgments of experts are put forward in this paper. The intersection and union of membership functions are defined as belief and plausible membership function respectively, and the Murfhy's average combination rule is adopted to combine the basic probability assignment for focal elements. Then the combined membership functions are transformed to the equivalent probability density function by a normalizing factor. Finally, a reliability analysis procedure for structures with the mixture of epistemic and aleatory uncertainties is presented, in which the equivalent normalization method is adopted to solve the upper and lower bound of reliability. The effectiveness of the procedure is demonstrated by a numerical example and an engineering example. The results also show that the reliability interval calculated by the suggested method is almost identical to that solved by conventional method. Moreover, the results indicate that the computational cost of the suggested procedure is much less than that of conventional method. The suggested ET model provides a new way to flexibly represent epistemic uncertainty, and provides an efficiency method to estimate the reliability of structures with the mixture of epistemic and aleatory uncertainties.

Optimal Design of a Novel Permanent Magnetic Actuator using Evolutionary Strategy Algorithm and Kriging Meta-model

  • Hong, Seung-Ki;Ro, Jong-Suk;Jung, Hyun-Kyo
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.471-477
    • /
    • 2014
  • The novel permanent magnetic actuator (PMA) and its optimal design method were proposed in this paper. The proposed PMA is referred to as the separated permanent magnetic actuator (SPMA) and significantly superior in terms of its cost and performance level over a conventional PMA. The proposed optimal design method uses the evolutionary strategy algorithm (ESA), the kriging meta-model (KMM), and the multi-step optimization. The KMM can compensate the slow convergence of the ESA. The proposed multi-step optimization process, which separates the independent variables, can decrease time and increase the reliability for the optimal design result. Briefly, the optimization time and the poor reliability of the optimum are mitigated by the proposed optimization method.

Novel Hierarchical Test Architecture for SOC Test Methodology Using IEEE Test Standards

  • Han, Dong-Kwan;Lee, Yong;Kang, Sung-Ho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.3
    • /
    • pp.293-296
    • /
    • 2012
  • SOC test methodology in ultra deep submicron (UDSM) technology with reasonable test time and cost has begun to satisfy high quality and reliability of the product. A novel hierarchical test architecture using IEEE standard 1149.1, 1149.7 and 1500 compliant facilities is proposed for the purpose of supporting flexible test environment to ensure SOC test methodology. Each embedded core in a system-on- a-chip (SOC) is controlled by test access ports (TAP) and TAP controller of IEEE standard 1149.1 as well as tested using IEEE standard 1500. An SOC device including TAPed cores is hierarchically organized by IEEE standard 1149.7 in wafer and chip level. As a result, it is possible to select/deselect all cores embedded in an SOC flexibly and reduce test cost dramatically using star scan topology.

Optimal Maintenance Policy Using Non-Informative Prior Distribution and Marcov Chain Monte Carlo Method (사전확률분포와 Marcov Chain Monte Carlo법을 이용한 최적보전정책 연구)

  • Ha, Jung Lang;Park, Minjae
    • Journal of Applied Reliability
    • /
    • v.17 no.3
    • /
    • pp.188-196
    • /
    • 2017
  • Purpose: The purpose of this research is to determine optimal replacement age using non-informative prior information and Bayesian method. Methods: We propose a novel approach using Bayesian method to determine the optimal replacement age in block replacement policy by defining the prior probability with data on failure time and repair time. The Marcov Chain Monte Carlo simulation is used to investigate the asymptotic distribution of posterior parameters. Results: An optimal replacement age of block replacement policy is determined which minimizes cost and nonoperating time when no information on prior distribution of parameters is given. Conclusion: We find the posterior distribution of parameters when lack of information on prior distribution, so that the optimal replacement age which minimizes the total cost and maximizes the total values is determined.

A Combined Pharmacophore-Based Virtual Screening, Docking Study and Molecular Dynamics (MD) Simulation Approach to Identify Inhibitors with Novel Scaffolds for Myeloid cell leukemia (Mcl-1)

  • Bao, Guang-Kai;Zhou, Lu;Wang, Tai-Jin;He, Lu-Fen;Liu, Tao
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.2097-2108
    • /
    • 2014
  • Chemical feature based quantitative pharmacophore models were generated using the HypoGen module implemented in DS2.5. The best hypothesis, Hypo1, which was characterized by the highest correlation coefficient (0.96), the highest cost difference (61.60) and the lowest RMSD (0.74), consisted of one hydrogen bond acceptor, one hydrogen bond donor, one hydrophobic and one ring aromatic. The reliability of Hypo1 was validated on the basis of cost analysis, test set, Fischer's randomization method and GH test method. The validated Hypo1 was used as a 3D search query to identify novel inhibitors. The screened molecules were further refined by employing ADMET, docking studies and visual inspection. Three compounds with novel scaffolds were selected as the most promising candidates for the designing of Mcl-1 antagonists. Finally, a 10 ns molecular dynamics simulation was carried out on the complex of receptor and the retrieved ligand to demonstrate that the binding mode was stable during the MD simulation.

A HIGH VOLTAGE DC POWER SUPPLY SUITABLE FOR AN ION SOURCE

  • Nho, Eui-Cheol;Kim, In-Dong
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.436-441
    • /
    • 1998
  • This paper proposes an novel dc power supply using modified multilevel ac/dc converter. The output voltage of the power supply can be disconnected from and reapplied to the load rapidly. Therefore the power supply is suitable for a load having frequent short circuit such as ion source. The proposed scheme improves the performance, efficiency, and reliability and reduces the cost of the conventional power supply system for an ion beam acceleration.

  • PDF

A Novel MRAS Based Sensorless Speed Control of Induction Motor (새로운 MRAS에 의한 유도전동기의 센서리스 속도제어)

  • Jin, Dae-Won;Gwon, Yeong-An
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.3
    • /
    • pp.124-130
    • /
    • 1999
  • Speed and position sensors require the additional mounting space, reduce the reliability in harsh environments and increase the cost of motor. Various control algorithms have been proposed for the elimination of speed senor. This paper investigates a novel speed sensorless control of induction motor. The proposed control strategy is based on MRAS(Model Reference Adaptive System) using state observer as a reference model for flux estimation. This algorithm may overcome several shortages of conventional MRAS: integrator problems, small EMF at low speed and relatively large sensitivity to resistance variation. The proposed algorithm is verified through simulation and experiment.

  • PDF

A Novel Circuit Configuration of UPS with Auxiliary Inverter and Its Specific Control Implementations

  • Hirachi, Katsuya;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.224-229
    • /
    • 2003
  • The rapid expansion of small computers over the last 10-odd years has brought about great changes in the circumstances affecting UPSs. There are strong demands that UPSs become much smaller and lighter, and more economical, which has resulted in the wide application of the circuit topology without transformer. A disadvantage of such UPS topology is that the DC link voltage is very high, which invites decreased reliability and increased cost of battery bank. Some circuit configurations were proposed to eliminate this disadvantage, but they still had problems. In this paper, a novel circuit configuration which eliminates these problems is proposed and evaluated by the experimental results of prototype UPS.