• 제목/요약/키워드: Novel pathogen

검색결과 166건 처리시간 0.032초

A Novel Marker for the Species-Specific Detection and Quantitation of Shigella sonnei by Targeting a Methylase Gene

  • Cho, Min Seok;Ahn, Tae-Young;Joh, Kiseong;Kwon, Oh-Sang;Jheong, Won-Hwa;Park, Dong Suk
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권8호
    • /
    • pp.1113-1117
    • /
    • 2012
  • Shigella sonnei is a causal agent of fever, nausea, stomach cramps, vomiting, and diarrheal disease. The present study describes a quantitative polymerase chain reaction (qPCR) assay for the specific detection of S. sonnei using a primer pair based on the methylase gene for the amplification of a 325 bp DNA fragment. The qPCR primer set for the accurate diagnosis of Shigella sonnei was developed from publically available genome sequences. This quantitative PCR-based method will potentially simplify and facilitate the diagnosis of this pathogen and guide disease management.

세균의 적정밀도 인식을 통한 신호전달 및 신호전달 차단 연구 (Bacterial Quorum Sensing and Anti-Quorum Sensing)

  • 박순양;이정기
    • 한국미생물·생명공학회지
    • /
    • 제32권1호
    • /
    • pp.1-10
    • /
    • 2004
  • Many bacteria monitor their population density and control the expression of specialized gene sets in response to bacterial cell density based on a mechanism referred to as quorum sensing. In all cases, quorum sensing involves the production and detection of extracellular signaling molecules, auto inducers, as which Gram-negative and Gram-positive bacteria use most prevalently acylated homoserine lactones and processed oligo-peptides, respectively. Through quorum-sensing communication circuits, bacteria regulate a diverse array of physiological functions, including virulence, symbiosis, competence, conjugation, antibiotic production, motility, sporulation, and biofilm formation. Many pathogens have evolved quorum-sensing mechanisms to mount population-density-dependent attacks to over-whelm the defense responses of plants, animals, and humans. Since these AHL-mediated signaling mechanisms are widespread and highly conserved in many pathogenic bacteria, the disruption of quorum-sensing system might be an attractive target for novel anti-infective therapy. To control AHL-mediated pathogenicity, several promising strategies to disrupt bacterial quorum sensing have been reported, and several chemicals and enzymes have been also investigated for years. These studies indicate that anti-quorum sensing strategies could be developed as possible alternatives of antibiotics.

Antimicrobial, Antioxidant and Hemolytic Activity of Water-soluble Extract of Mottled Anemone Urticina crassicornis

  • Lee, Ye Jin;Kim, Chan-Hee;Oh, Hye Young;Go, Hye-Jin;Park, Nam Gyu
    • Fisheries and Aquatic Sciences
    • /
    • 제18권4호
    • /
    • pp.341-347
    • /
    • 2015
  • We evaluated the biological activities of five water extracts of tissue of the mottled anemone Urticina crassicornis. Most extracts exhibited broad-spectrum antimicrobial activity as determined by ultrasensitive radial diffusion assay (URDA) against gram-positive and -negative bacteria, including a fish pathogen, Aeromonas hydrophila, but no activity against fungi. The activity of the extracts was abolished by tryptic digestion, indicating that protein compounds were responsible for the antimicrobial activity. Furthermore, in a 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical-scavenging activity assay, only the visceral tissue extract showed activity. However, no extract had hemolytic activity against human red blood cells. Consequently, this study suggests the water-soluble extract of mottled anemone to be a promising source of proteinaceous antimicrobial compounds that can be utilized for development of novel antibiotics.

Synthesis of Nanomaterials such as fluorescent-magnetic Nanoclusters and Frequency Doubling Nanowires for Bioapplications

  • Jeong, Jinhoo;Kim, Seungwook;Kim, Woong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.132.1-132.1
    • /
    • 2014
  • Fluorescent-magnetic nanoclusters were synthesized for biomedical applications. The nanoclusters consisted of superparamagnetic core-nanoclusters, highly fluorescent shell of nanocrystals, and lipid A. Magnetic cores were used for both magnetic resonance imaging (MRI) and cell separation. Fluorescent shell was used for optical imaging. The lipid-A-loaded nanoclusters were up-taken by dendritic cells via phagocytosis, which successfully activated dendritic cells. The dendritic cells were migrated to lymph nodes and spleen of mice. The results showed that our novel nanoclusters can play a role as an efficient optical and magnetic imaging, a cell separating and a pathogen mimetic agent at the same time. Additionally, synthesis of wavelength conversion nanowires will be discussed, which may be used as an optical nanoprobe in biological studies.

  • PDF

Survival assays using Caenorhabditis elegans

  • Park, Hae-Eun H.;Jung, Yoonji;Lee, Seung-Jae V.
    • Molecules and Cells
    • /
    • 제40권2호
    • /
    • pp.90-99
    • /
    • 2017
  • Caenorhabditis elegans is an important model organism with many useful features, including rapid development and aging, easy cultivation, and genetic tractability. Survival assays using C. elegans are powerful methods for studying physiological processes. In this review, we describe diverse types of C. elegans survival assays and discuss the aims, uses, and advantages of specific assays. C. elegans survival assays have played key roles in identifying novel genetic factors that regulate many aspects of animal physiology, such as aging and lifespan, stress response, and immunity against pathogens. Because many genetic factors discovered using C. elegans are evolutionarily conserved, survival assays can provide insights into mechanisms underlying physiological processes in mammals, including humans.

Full-length ORF2 sequence-based genetic and phylogenetic characterization of Korean feline caliciviruses

  • Kim, Sung Jae;Kim, Cheongung;Chung, Hee Chun;Park, Yong Ho;Park, Kun Taek
    • Journal of Veterinary Science
    • /
    • 제22권3호
    • /
    • pp.32.1-32.8
    • /
    • 2021
  • Feline calicivirus (FCV) is a highly infectious pathogen in cats and widely distributed worldwide with high genetic variation. Full-length open reading frame 2 of 5 from recently isolated Korean FCV isolates were sequenced and compared with those of global isolates. The results of phylogenetic analysis supported dividing global FCV isolates into two genogroups (type I and II) and demonstrated the presence of genogroup II in Korea, indicating their geographic spread in East Asia. High sequence variations in region E of the FCV isolates emphasizes that a novel vaccine needs to be developed to induce protective immunity against various FCV strains.

Antibacterial compounds in green microalgae from extreme environments: a review

  • Little, Shannon M.;Senhorinho, Gerusa N.A.;Saleh, Mazen;Basiliko, Nathan;Scott, John A.
    • ALGAE
    • /
    • 제36권1호
    • /
    • pp.61-72
    • /
    • 2021
  • Increased proliferation of bacterial resistance to antibiotics is a critical issue that has increased the demand for novel antibacterial compounds. Antibacterial activities have been evaluated in extracts from photosynthetic green microalgae, with varying levels of subsequent potential for development based on the strain of algae, strain of bacterial pathogen, and solvent used to extract the metabolites. Green microalgae from extreme environmental conditions have had to adapt to conditions that exclude many other organisms. The production of antibacterial compounds aids directly or indirectly in the survival of green microalgae in these extreme environments, as well as potentially serve other roles. This review investigates antibacterial activities of green microalgae from both extreme in-situ environmental conditions and induced extreme laboratory conditions and highlights.

Exploring Staphylococcus aureus Virulence Factors; Special Emphasis on Staphyloxanthin

  • Yehia, Fatma Al-zahraa A.;Yousef, Nehal;Askoura, Momen
    • 한국미생물·생명공학회지
    • /
    • 제49권4호
    • /
    • pp.467-477
    • /
    • 2021
  • Staphylococcus aureus is a well-known pathogen that can cause diseases in humans. It can cause both mild superficial skin infections and serious deep tissue infections, including pneumonia, osteomyelitis, and infective endocarditis. To establish host infection, S. aureus manages a complex regulatory network to control virulence factor production in both temporal and host locations. Among these virulence factors, staphyloxanthin, a carotenoid pigment, has been shown to play a leading role in S. aureus pathogenesis. In addition, staphyloxanthin provides integrity to the bacterial cell membrane and limits host oxidative defense mechanisms. The overwhelming rise of Staphylococcus resistance to routinely used antibiotics has necessitated the development of novel anti-virulence agents to overcome this resistance. This review presents an overview of the chief virulence determinants in S. aureus. More attention will be paid to staphyloxanthin, which could be a possible target for anti-virulence agents.

Molecular Cloning and Functional Analysis of Rice (Oryza sativa L.) OsNDR1 on Defense Signaling Pathway

  • Lee, Joo-Hee;Kim, Sun-Hyung;Jung, Young-Ho;Kim, Jung-A;Lee, Mi-Ok;Choi, Pil-Gyu;Choi, Woo-Bong;Kim, Kyung-Nam;Jwa, Nam-Soo
    • The Plant Pathology Journal
    • /
    • 제21권2호
    • /
    • pp.149-157
    • /
    • 2005
  • A novel rice (Oryza sativa L.) gene, homologous to Arabidopsis pathogenesis-related NDR1 gene, was cloned from cDNA library prepared from 30 min Magnaporthe grisea -treated rice seedling leaves, and named as OsNDR1. OsNDR1 encoded a 220-aminoacid polypeptide and was highly similar to the Arabidopsis AtNDR1 protein. OsNDR1 is a plasma membrane (PM)-localized protein, and presumes through sequence analysis and protein localization experiment. Overexpression of OsNDR1 promotes the expression of PBZ1 that is essential for the activation of defense/stressrelated gene. The OsNDR1 promoter did not respond significantly to treatments with either SA, PBZ, or ETP. Exogenously applied BTH induces the same set of SAR genes as biological induction, providing further evidence for BTH as a signal. Presumably, BTH is bound by a receptor and the binding triggers a signal transduction cascade that has an ultimate effect on transcription factors that regulate SAR gene expression. Thus OsNDR1 may act as a transducer of pathogen signals and/or interact with the pathogen and is indeed another important step in clarifying the component participating in the defense response pathways in rice.