References
- Aitlhadj, L., and Sturzenbaum, S.R. (2010). The use of FUdR can cause prolonged longevity in mutant nematodes. Mech. Ageing Dev. 131, 364-365. https://doi.org/10.1016/j.mad.2010.03.002
- Alspaugh, J.A. (2015). Virulence mechanisms and Cryptococcus neoformans pathogenesis. Fungal Genet. Biol. 78, 55-58. https://doi.org/10.1016/j.fgb.2014.09.004
- Altintas, O., Park, S., and Lee, S.J. (2016). The role of insulin/IGF-1 signaling in the longevity of model invertebrates, C. elegans and D. melanogaster. BMB Rep. 49, 81-92. https://doi.org/10.5483/BMBRep.2016.49.2.261
- Amrit, F.R., Ratnappan, R., Keith, S.A., and Ghazi, A. (2014). The C. elegans lifespan assay toolkit. Methods 68, 465-475. https://doi.org/10.1016/j.ymeth.2014.04.002
- Barsyte, D., Lovejoy, D.A., and Lithgow, G.J. (2001). Longevity and heavy metal resistance in daf-2 and age-1 long-lived mutants of Caenorhabditis elegans. FASEB J. 15, 627-634. https://doi.org/10.1096/fj.99-0966com
- Beanan, M.J., and Strome, S. (1992). Characterization of a germ-line proliferation mutation in C. elegans. Development 116, 755-766.
- Cabreiro, F., Au, C., Leung, K.Y., Vergara-Irigaray, N., Cocheme, H.M., Noori, T., Weinkove, D., Schuster, E., Greene, N.D., and Gems, D. (2013). Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell 153, 228-239. https://doi.org/10.1016/j.cell.2013.02.035
- Choe, K.P., and Strange, K. (2007). Molecular and genetic characterization of osmosensing and signal transduction in the nematode Caenorhabditis elegans. FEBS J. 274, 5782-5789. https://doi.org/10.1111/j.1742-4658.2007.06098.x
- Cleland, W.W. (1964). DITHIOTHREITOL, A NEW PROTECTIVE REAGENT FOR SH GROUPS. Biochemistry 3, 480-482. https://doi.org/10.1021/bi00892a002
- Corsi, A.K., Wightman, B., and Chalfie, M. (2015). A transparent window into biology: a primer on Caenorhabditis elegans. Worm-Book, 1-31.
- Darby, C. (2005). Interactions with microbial pathogens. WormBook, 1-15.
- Doonan, R., McElwee, J.J., Matthijssens, F., Walker, G.A., Houthoofd, K., Back, P., Matscheski, A., Vanfleteren, J.R., and Gems, D. (2008). Against the oxidative damage theory of aging: superoxide dismutases protect against oxidative stress but have little or no effect on life span in Caenorhabditis elegans. Genes Dev. 22, 3236-3241. https://doi.org/10.1101/gad.504808
- Ewbank, J.J. (2006). Signaling in the immune response. WormBook, 1-12.
- Ewbank, J.J., and Pujol, N. (2016). Local and long-range activation of innate immunity by infection and damage in C. elegans. Curr. Opin. Immunol 38, 1-7. https://doi.org/10.1016/j.coi.2015.09.005
- Felix, M.A., Ashe, A., Piffaretti, J., Wu, G., Nuez, I., Belicard, T., Jiang, Y., Zhao, G., Franz, C.J., Goldstein, L.D., et al. (2011). Natural and experimental infection of Caenorhabditis nematodes by novel viruses related to nodaviruses. PLoS Biol. 9, e1000586. https://doi.org/10.1371/journal.pbio.1000586
- Fisher, R.A. (1990). Statistical methods, experimental design, and scientific inference (Oxford Univ. Press).
- Ford, S.A., Kao, D., Williams, D., and King, K.C. (2016). Microbemediated host defence drives the evolution of reduced pathogen virulence. Nat. Commun. 7, 13430. https://doi.org/10.1038/ncomms13430
- Franz, C.J., Zhao, G., Felix, M.A., and Wang, D. (2012). Complete genome sequence of Le Blanc virus, a third Caenorhabditis nematode-infecting virus. J. Virol. 86, 11940. https://doi.org/10.1128/JVI.02025-12
- Freedman, J.H., Slice, L.W., Dixon, D., Fire, A., and Rubin, C.S. (1993). The novel metallothionein genes of Caenorhabditis elegans. Structural organization and inducible, cell-specific expression. J. Biol. Chem. 268, 2554-2564.
- Garigan, D., Hsu, A.L., Fraser, A.G., Kamath, R.S., Ahringer, J., and Kenyon, C. (2002). Genetic analysis of tissue aging in Caenorhabditis elegans: a role for heat-shock factor and bacterial proliferation. Genetics 161, 1101-1112.
- Gems, D., and Riddle, D.L. (1996). Longevity in Caenorhabditis elegans reduced by mating but not gamete production. Nature 379, 723-725. https://doi.org/10.1038/379723a0
- Gill, M.S., Olsen, A., Sampayo, J.N., and Lithgow, G.J. (2003). An automated high-throughput assay for survival of the nematode Caenorhabditis elegans. Free Radic. Biol. Med. 35, 558-565. https://doi.org/10.1016/S0891-5849(03)00328-9
- Greer, E.L., Maures, T.J., Ucar, D., Hauswirth, A.G., Mancini, E., Lim, J.P., Benayoun, B.A., Shi, Y., and Brunet, A. (2011). Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans. Nature 479, 365-371. https://doi.org/10.1038/nature10572
- Hall, J., Haas, K.L., and Freedman, J.H. (2012). Role of MTL-1, MTL-2, and CDR-1 in mediating cadmium sensitivity in Caenorhabditis elegans. Toxicol. Sci. 128, 418-426. https://doi.org/10.1093/toxsci/kfs166
- Han, S.K., Lee, D., Lee, H., Kim, D., Son, H.G., Yang, J.S., Lee, S.V., and Kim, S. (2016). OASIS 2: online application for survival analysis 2 with features for the analysis of maximal lifespan and healthspan in aging research. Oncotarget 7, 56147-56152. https://doi.org/10.18632/oncotarget.11269
- Herndon, L.A., Schmeissner, P.J., Dudaronek, J.M., Brown, P.A., Listner, K.M., Sakano, Y., Paupard, M.C., Hall, D.H., and Driscoll, M. (2002). Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans. Nature 419, 808-814. https://doi.org/10.1038/nature01135
- Hodgkin, J., and Partridge, F.A. (2008). Caenorhabditis elegans meets microsporidia: the nematode killers from Paris. PLoS Biol. 6, 2634-2637.
- Hwang, A.B., and Lee, S.J. (2011). Regulation of life span by mitochondrial respiration: the HIF-1 and ROS connection. Aging (Albany NY) 3, 304-310.
- Hwang, A.B., Jeong, D.E., and Lee, S.J. (2012). Mitochondria and organismal longevity. Curr. Genomics 13, 519-532. https://doi.org/10.2174/138920212803251427
- Hwang, A.B., Ryu, E.A., Artan, M., Chang, H.W., Kabir, M.H., Nam, H.J., Lee, D., Yang, J.S., Kim, S., Mair, W.B., et al. (2014). Feedback regulation via AMPK and HIF-1 mediates ROS-dependent longevity in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 111, E4458-4467. https://doi.org/10.1073/pnas.1411199111
- Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B.B., and Beeregowda, K.N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol. 7, 60-72. https://doi.org/10.2478/intox-2014-0009
- Jiang, B., Ren, C., Li, Y., Lu, Y., Li, W., Wu, Y., Gao, Y., Ratcliffe, P.J., Liu, H., and Zhang, C. (2011). Sodium sulfite is a potential hypoxia inducer that mimics hypoxic stress in Caenorhabditis elegans. J. Biol. Inorg. Chem. 16, 267-274. https://doi.org/10.1007/s00775-010-0723-1
- Kaplan, E.L., and Meier, P. (1958). Nonparametric estimation from incomplete observations. J. Am. Statistical Association 53, 457-481. https://doi.org/10.1080/01621459.1958.10501452
- Keith, S.A., Amrit, F.R., Ratnappan, R., and Ghazi, A. (2014). The C. elegans healthspan and stress-resistance assay toolkit. Methods 68, 476-486. https://doi.org/10.1016/j.ymeth.2014.04.003
- Kenyon, C.J. (2010). The genetics of ageing. Nature 464, 504-512. https://doi.org/10.1038/nature08980
- Kim, D.H., and Ausubel, F.M. (2005). Evolutionary perspectives on innate immunity from the study of Caenorhabditis elegans. Curr. Opin. Immunol. 17, 4-10. https://doi.org/10.1016/j.coi.2004.11.007
- Kim, D.H., and Ewbank, J.J. (2015). Signaling in the innate immune response. WormBook, 1-51.
- Kirienko, N.V., Kirienko, D.R., Larkins-Ford, J., Wahlby, C., Ruvkun, G., and Ausubel, F.M. (2013). Pseudomonas aeruginosa disrupts Caenorhabditis elegans iron homeostasis, causing a hypoxic response and death. Cell Host Microbe 13, 406-416. https://doi.org/10.1016/j.chom.2013.03.003
- Kirienko, N.V., Cezairliyan, B.O., Ausubel, F.M., and Powell, J.R. (2014). Pseudomonas aeruginosa PA14 pathogenesis in Caenorhabditis elegans. Methods Mol. Biol. 1149, 653-669.
- Kourtis, N., Nikoletopoulou, V., and Tavernarakis, N. (2012). Small heatshock proteins protect from heat-stroke-associated neurodegeneration. Nature 490, 213-218. https://doi.org/10.1038/nature11417
- Kuo, S.C., and Lampen, J.O. (1974). Tunicamycin--an inhibitor of yeast glycoprotein synthesis. Biochem. Biophys. Res. Commun. 58, 287-295. https://doi.org/10.1016/0006-291X(74)90925-5
- Labbadia, J., and Morimoto, R.I. (2015). The biology of proteostasis in aging and disease. Annu. Rev. Biochem. 84, 435-464. https://doi.org/10.1146/annurev-biochem-060614-033955
- Lamitina, T., Huang, C.G., and Strange, K. (2006). Genome-wide RNAi screening identifies protein damage as a regulator of osmoprotective gene expression. Proc. Natl. Acad. Sci. USA 103, 12173-12178. https://doi.org/10.1073/pnas.0602987103
- Lee, S.J., Murphy, C.T., and Kenyon, C. (2009). Glucose shortens the life span of C. elegans by downregulating DAF-16/FOXO activity and aquaporin gene expression. Cell Metab. 10, 379-391. https://doi.org/10.1016/j.cmet.2009.10.003
- Lee, S.J., Hwang, A.B., and Kenyon, C. (2010). Inhibition of respiration extends C. elegans life span via reactive oxygen species that increase HIF-1 activity. Curr. Biol. 20, 2131-2136. https://doi.org/10.1016/j.cub.2010.10.057
- Lee, Y., An, S.W.A., Artan, M., Seo, M., Hwang, A.B., Jeong, D.-E., Son, H.G., Hwang, W., Lee, D., and Seo, K., et al. (2015). Genes and Pathways That Influence Longevity in Caenorhabditis elegans. In Aging Mechanisms (Springer), pp. 123-169.
- Lithgow, G.J., White, T.M., Hinerfeld, D.A., and Johnson, T.E. (1994). Thermotolerance of a long-lived mutant of Caenorhabditis elegans. J. Gerontol. 49, B270-276. https://doi.org/10.1093/geronj/49.6.B270
- Lu, N., and Goetsch, K. (1993). Carbohydrate requirement of Caenorhabditis elegans and the final development of a chemically defined medium. Nematologica 39, 303-311. https://doi.org/10.1163/187529293X00259
- Mantel, N. (1966). Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemother. Rep. 50, 163-170.
- Mathew, M.D., Mathew, N.D., and Ebert, P.R. (2012). WormScan: a technique for high-throughput phenotypic analysis of Caenorhabditis elegans. PLoS One 7, e33483. https://doi.org/10.1371/journal.pone.0033483
- Murakami, S., and Johnson, T.E. (1996). A genetic pathway conferring life extension and resistance to UV stress in Caenorhabditis elegans. Genetics 143, 1207-1218.
- Murray, P., Hayward, S.A., Govan, G.G., Gracey, A.Y., and Cossins, A.R. (2007). An explicit test of the phospholipid saturation hypothesis of acquired cold tolerance in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 104, 5489-5494. https://doi.org/10.1073/pnas.0609590104
- Mylonakis, E., Ausubel, F.M., Perfect, J.R., Heitman, J., and Calderwood, S.B. (2002). Killing of Caenorhabditis elegans by Cryptococcus neoformans as a model of yeast pathogenesis. Proc. Natl. Acad. Sci. USA 99, 15675-15680. https://doi.org/10.1073/pnas.232568599
- Mylonakis, E., Casadevall, A., and Ausubel, F.M. (2007). Exploiting amoeboid and non-vertebrate animal model systems to study the virulence of human pathogenic fungi. PLoS Pathog. 3, e101. https://doi.org/10.1371/journal.ppat.0030101
- O'Neil, N., and Rose, A. (2006). DNA repair. WormBook, 1-12.
- Oliveira, R.P., Porter Abate, J., Dilks, K., Landis, J., Ashraf, J., Murphy, C.T., and Blackwell, T.K. (2009). Condition-adapted stress and longevity gene regulation by Caenorhabditis elegans SKN-1/Nrf. Aging Cell 8, 524-541. https://doi.org/10.1111/j.1474-9726.2009.00501.x
- Papenfort, K., and Bassler, B.L. (2016). Quorum sensing signalresponse systems in Gram-negative bacteria. Nat. Rev. Microbiol. 14, 576-588. https://doi.org/10.1038/nrmicro.2016.89
- Powell-Coffman, J.A. (2010). Hypoxia signaling and resistance in C. elegans. Trends Endocrinol. Metab. 21, 435-440. https://doi.org/10.1016/j.tem.2010.02.006
- Pulak, R. (2006). Techniques for analysis, sorting, and dispensing of C. elegans on the COPAS flow-sorting system. Methods Mol. Biol. 351, 275-286.
- Rechavi, O., Houri-Ze'evi, L., Anava, S., Goh, W.S., Kerk, S.Y., Hannon, G.J., and Hobert, O. (2014). Starvation-induced transgenerational inheritance of small RNAs in C. elegans. Cell 158, 277-287. https://doi.org/10.1016/j.cell.2014.06.020
- Reddy, K.C., Andersen, E.C., Kruglyak, L., and Kim, D.H. (2009). A polymorphism in npr-1 is a behavioral determinant of pathogen susceptibility in C. elegans. Science 323, 382-384. https://doi.org/10.1126/science.1166527
- Rodriguez, M., Snoek, L.B., De Bono, M., and Kammenga, J.E. (2013). Worms under stress: C. elegans stress response and its relevance to complex human disease and aging. Trends Genet. 29, 367-374. https://doi.org/10.1016/j.tig.2013.01.010
- Rohlfing, A.K., Miteva, Y., Hannenhalli, S., and Lamitina, T. (2010). Genetic and physiological activation of osmosensitive gene expression mimics transcriptional signatures of pathogen infection in C. elegans. PloS one 5, e9010. https://doi.org/10.1371/journal.pone.0009010
- Rooney, J.P., Luz, A.L., Gonzalez-Hunt, C.P., Bodhicharla, R., Ryde, I.T., Anbalagan, C., and Meyer, J.N. (2014). Effects of 5'-fluoro-2-deoxyuridine on mitochondrial biology in Caenorhabditis elegans. Exp. Gerontol. 56, 69-76. https://doi.org/10.1016/j.exger.2014.03.021
- Samuelson, A.V., Carr, C.E., and Ruvkun, G. (2007). Gene activities that mediate increased life span of C. elegans insulin-like signaling mutants. Genes Dev. 21, 2976-2994. https://doi.org/10.1101/gad.1588907
- Savory, F.R., Sait, S.M., and Hope, I.A. (2011). DAF-16 and Δ9 desaturase genes promote cold tolerance in long-lived Caenorhabditis elegans age-1 mutants. PLoS One 6, e24550. https://doi.org/10.1371/journal.pone.0024550
- Scott, B.A., Avidan, M.S., and Crowder, C.M. (2002). Regulation of hypoxic death in C. elegans by the insulin/IGF receptor homolog DAF-2. Science 296, 2388-2391. https://doi.org/10.1126/science.1072302
- Shen, X., Ellis, R.E., Lee, K., Liu, C.Y., Yang, K., Solomon, A., Yoshida, H., Morimoto, R., Kurnit, D.M., Mori, K., et al. (2001). Complementary signaling pathways regulate the unfolded protein response and are required for C. elegans development. Cell 107, 893-903. https://doi.org/10.1016/S0092-8674(01)00612-2
- Sies, H. (1985). Oxidative stress: introductory remarks. Oxidative Stress, 1-8.
- Sonoda, S., Ohta, A., Maruo, A., Ujisawa, T., and Kuhara, A. (2016). Sperm affects head sensory neuron in temperature tolerance of Caenorhabditis elegans. Cell Rep. 16, 56-65. https://doi.org/10.1016/j.celrep.2016.05.078
- Stiernagle, T. (2006). Maintenance of C. elegans. WormBook, 1-11.
- Stroustrup, N., Ulmschneider, B.E., Nash, Z.M., Lopez-Moyado, I.F., Apfeld, J., and Fontana, W. (2013). The Caenorhabditis elegans lifespan machine. Nat. Methods 10, 665-670. https://doi.org/10.1038/nmeth.2475
- Stroustrup, N., Anthony, W.E., Nash, Z.M., Gowda, V., Gomez, A., Lopez-Moyado, I.F., Apfeld, J., and Fontana, W. (2016). The temporal scaling of Caenorhabditis elegans ageing. Nature 530, 103-107. https://doi.org/10.1038/nature16550
- Sun, A.Y., and Lambie, E.J. (1997). gon-2, a gene required for gonadogenesis in Caenorhabditis elegans. Genetics 147, 1077-1089.
- Szewczyk, N.J., Udranszky, I.A., Kozak, E., Sunga, J., Kim, S.K., Jacobson, L.A., and Conley, C.A. (2006). Delayed development and lifespan extension as features of metabolic lifestyle alteration in C. elegans under dietary restriction. J. Exp. Biol. 209, 4129-4139. https://doi.org/10.1242/jeb.02492
- Troemel, E.R. (2016). Host-microsporidia interactions in Caenorhabditis elegans, a model nematode host. Microbiol Spectr 4.
- Troemel, E.R., Felix, M.A., Whiteman, N.K., Barriere, A., and Ausubel, F.M. (2008). Microsporidia are natural intracellular parasites of the nematode Caenorhabditis elegans. PLoS Biol. 6, 2736-2752.
- Van Raamsdonk, J.M., and Hekimi, S. (2011). FUdR causes a twofold increase in the lifespan of the mitochondrial mutant gas-1. Mech. Ageing Dev. 132, 519-521. https://doi.org/10.1016/j.mad.2011.08.006
- Van Raamsdonk, J.M., and Hekimi, S. (2012). Superoxide dismutase is dispensable for normal animal lifespan. Proc. Natl. Acad. Sci. USA 109, 5785-5790. https://doi.org/10.1073/pnas.1116158109
- Vilchez, D., Saez, I., and Dillin, A. (2014). The role of protein clearance mechanisms in organismal ageing and age-related diseases. Nat. Commun. 5, 5659. https://doi.org/10.1038/ncomms6659
- Walter, P., and Ron, D. (2011). The unfolded protein response: from stress pathway to homeostatic regulation. Science 334, 1081-1086. https://doi.org/10.1126/science.1209038
- Wang, Y., and Hekimi, S. (2015). Mitochondrial dysfunction and longevity in animals: Untangling the knot. Science 350, 1204-1207. https://doi.org/10.1126/science.aac4357
- Wang, D., Liu, P., and Xing, X. (2010). Pre-treatment with mild UV irradiation increases the resistance of nematode Caenorhabditis elegans to toxicity on locomotion behaviors from metal exposure. Environ Toxicol Pharmacol 29, 213-222. https://doi.org/10.1016/j.etap.2010.01.002
- Xian, B., Shen, J., Chen, W., Sun, N., Qiao, N., Jiang, D., Yu, T., Men, Y., Han, Z., Pang, Y., et al. (2013). WormFarm: a quantitative control and measurement device toward automated Caenorhabditis elegans aging analysis. Aging Cell 12, 398-409. https://doi.org/10.1111/acel.12063
- Yang, W., and Hekimi, S. (2010). A mitochondrial superoxide signal triggers increased longevity in Caenorhabditis elegans. PLoS Biol. 8, e1000556. https://doi.org/10.1371/journal.pbio.1000556
- Yang, J.S., Nam, H.J., Seo, M., Han, S.K., Choi, Y., Nam, H.G., Lee, S.J., and Kim, S. (2011). OASIS: online application for the survival analysis of lifespan assays performed in aging research. PLoS One 6, e23525. https://doi.org/10.1371/journal.pone.0023525
- Ziehm, M., Ivanov, D.K., Bhat, A., Partridge, L., and Thornton, J.M. (2015). SurvCurv database and online survival analysis platform update. Bioinformatics 31, 3878-3880.
Cited by
- Interference in Bacterial Quorum Sensing: A Biopharmaceutical Perspective vol.9, pp.1663-9812, 2018, https://doi.org/10.3389/fphar.2018.00203
- Auxin-Mediated Sterility Induction System for Longevity and Mating Studies in Caenorhabditis elegans vol.8, pp.8, 2017, https://doi.org/10.1534/g3.118.200278
- Prefoldin 6 mediates longevity response from heat shock factor 1 to FOXO in C. elegans vol.32, pp.23, 2017, https://doi.org/10.1101/gad.317362.118
- Expression of Ice-Binding Proteins in Caenorhabditis elegans Improves the Survival Rate upon Cold Shock and during Freezing vol.9, pp.None, 2017, https://doi.org/10.1038/s41598-019-42650-8
- Understanding lipidomic basis of iron limitation induced chemosensitization of drug-resistant Mycobacterium tuberculosis vol.9, pp.4, 2019, https://doi.org/10.1007/s13205-019-1645-4
- A Simple and a Reliable Method to Quantify Antioxidant Activity In Vivo vol.8, pp.5, 2019, https://doi.org/10.3390/antiox8050142
- The Stress-Chip: A microfluidic platform for stress analysis in Caenorhabditis elegans vol.14, pp.5, 2019, https://doi.org/10.1371/journal.pone.0216283
- Non-Coding RNAs in Caenorhabditis elegans Aging vol.42, pp.5, 2019, https://doi.org/10.14348/molcells.2019.0077
- Polyphenols and Metabolites Enhance Survival in Rodents and Nematodes-Impact of Mitochondria vol.11, pp.8, 2017, https://doi.org/10.3390/nu11081886
- New label‐free automated survival assays reveal unexpected stress resistance patterns during C. elegans aging vol.18, pp.5, 2019, https://doi.org/10.1111/acel.12998
- Animal Models of Type III Secretion System-Mediated Pathogenesis vol.8, pp.4, 2017, https://doi.org/10.3390/pathogens8040257
- The NLRP3-Mediated Neuroinflammatory Responses to CdTe Quantum Dots and the Protection of ZnS Shell vol.15, pp.None, 2020, https://doi.org/10.2147/ijn.s246578
- Molecular Nanomachines Can Destroy Tissue or Kill Multicellular Eukaryotes vol.12, pp.12, 2017, https://doi.org/10.1021/acsami.9b22595
- SK channel-mediated metabolic escape to glycolysis inhibits ferroptosis and supports stress resistance in C. elegans vol.11, pp.4, 2017, https://doi.org/10.1038/s41419-020-2458-4
- VATA: A Poly(vinyl alcohol)- and Tannic Acid-Based Nontoxic Underwater Adhesive vol.12, pp.18, 2017, https://doi.org/10.1021/acsami.0c02037
- Transcriptome changes during the initiation and progression of Duchenne muscular dystrophy in Caenorhabditis elegans vol.29, pp.10, 2017, https://doi.org/10.1093/hmg/ddaa055
- Infertility induced by auxin in PX627 Caenorhabditis elegans does not affect mitochondrial functions and aging parameters vol.12, pp.12, 2020, https://doi.org/10.18632/aging.103413
- Phenotypic Screening in C. elegans as a Tool for the Discovery of New Geroprotective Drugs vol.13, pp.8, 2020, https://doi.org/10.3390/ph13080164
- The SEM-4 Transcription Factor Is Required for Regulation of the Oxidative Stress Response in Caenorhabditis elegans vol.10, pp.9, 2020, https://doi.org/10.1534/g3.120.401316
- A Simple Nematode Infection Model for Studying Candida albicans Pathogenesis vol.59, pp.1, 2017, https://doi.org/10.1002/cpmc.114
- A robust and miniaturized screening platform to study natural products affecting metabolism and survival in Caenorhabditis elegans vol.10, pp.None, 2020, https://doi.org/10.1038/s41598-020-69186-6
- The C. elegans miR-235 regulates the toxicity of graphene oxide via targeting the nuclear hormone receptor DAF-12 in the intestine vol.10, pp.1, 2017, https://doi.org/10.1038/s41598-020-73712-x
- Combinatorial Approach Using Caenorhabditis elegans and Mammalian Systems for Aging Research vol.44, pp.7, 2017, https://doi.org/10.14348/molcells.2021.0080
- Review of Biological Effects of Acute and Chronic Radiation Exposure on Caenorhabditis elegans vol.10, pp.8, 2017, https://doi.org/10.3390/cells10081966
- Non-Rodent Genetic Animal Models for Studying Tauopathy: Review of Drosophila , Zebrafish, and C. elegans Models vol.22, pp.16, 2017, https://doi.org/10.3390/ijms22168465
- Eyeless Worms Can Run Away from Dangerous Blues vol.44, pp.8, 2021, https://doi.org/10.14348/molcells.2021.0201
- Diagnosis of biofilm infections: current methods used, challenges and perspectives for the future vol.131, pp.5, 2017, https://doi.org/10.1111/jam.15049
- Blumea laciniata protected Hep G2 cells and Caenorhabditis elegans against acrylamide-induced toxicity via insulin/IGF-1 signaling pathway vol.158, pp.None, 2017, https://doi.org/10.1016/j.fct.2021.112667
- Phosphorothioate-DNA bacterial diet reduces the ROS levels in C. elegans while improving locomotion and longevity vol.4, pp.1, 2017, https://doi.org/10.1038/s42003-021-02863-y
- Toxic stress-specific cytoprotective responses regulate learned behavioral decisions in C. elegans vol.19, pp.1, 2021, https://doi.org/10.1186/s12915-021-00956-y
- Gallol-based constant underwater coating adhesives for severe aqueous conditions vol.634, pp.None, 2022, https://doi.org/10.1016/j.colsurfa.2021.127948