Browse > Article
http://dx.doi.org/10.48022/mbl.2107.07008

Exploring Staphylococcus aureus Virulence Factors; Special Emphasis on Staphyloxanthin  

Yehia, Fatma Al-zahraa A. (Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University)
Yousef, Nehal (Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University)
Askoura, Momen (Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University)
Publication Information
Microbiology and Biotechnology Letters / v.49, no.4, 2021 , pp. 467-477 More about this Journal
Abstract
Staphylococcus aureus is a well-known pathogen that can cause diseases in humans. It can cause both mild superficial skin infections and serious deep tissue infections, including pneumonia, osteomyelitis, and infective endocarditis. To establish host infection, S. aureus manages a complex regulatory network to control virulence factor production in both temporal and host locations. Among these virulence factors, staphyloxanthin, a carotenoid pigment, has been shown to play a leading role in S. aureus pathogenesis. In addition, staphyloxanthin provides integrity to the bacterial cell membrane and limits host oxidative defense mechanisms. The overwhelming rise of Staphylococcus resistance to routinely used antibiotics has necessitated the development of novel anti-virulence agents to overcome this resistance. This review presents an overview of the chief virulence determinants in S. aureus. More attention will be paid to staphyloxanthin, which could be a possible target for anti-virulence agents.
Keywords
Staphylococcus aureus; virulence; anti-virulence therapy; staphyloxanthin;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kazakova SV, Hageman JC, Matava M, Srinivasan A, Phelan L, Garfinkel B, et al. 2005. A clone of methicillin-resistant Staphylococcus aureus among professional football players. N. Engl. J. Med. 352: 468-475.   DOI
2 Sen S, Sirobhushanam S, Johnson SR, Song Y, Tefft R, Gatto C, et al. 2016. Growth-environment dependent modulation of Staphylococcus aureus branched-chain to straight-chain fatty acid ratio and incorporation of unsaturated fatty acids. PLoS One 11: e0165300.   DOI
3 Fernandes A, Nascimento TC, Jacob-Lopes E, De Rosso V, Zepka L. 2018. Introductory Chapter: Carotenoids - A brief overview on its structure, biosynthesis, synthesis, and applications, 1: 1-16, Ed.
4 Palma M, Cheung AL. 2001. Sigma(B) activity in Staphylococcus aureus is controlled by RsbU and an additional factor(s) during bacterial growth. Infect. Immun. 69: 7858-7865.   DOI
5 Liu Y, Wu N, Dong J, Gao Y, Zhang X, Shao N, et al. 2010. SsrA (tmRNA) acts as an antisense RNA to regulate Staphylococcus aureus pigment synthesis by base pairing with crtMN mRNA. FEBS Lett. 584: 4325-4329.   DOI
6 Kullik I, Giachino P, Fuchs T. 1998. Deletion of the alternative sigma factor σB in Staphylococcus aureus reveals its function as a global regulator of virulence genes. J. Bacteriol. 180: 4814-4820.   DOI
7 van Schaik W, Abee T. 2005. The role of σB in the stress response of Gram-positive bacteria - targets for food preservation and safety. Curr. Opin. Biotechnol. 16: 218-224.   DOI
8 Katzif S, Lee E-H, Law AB, Tzeng Y-L, Shafer WM. 2005. CspA regulates pigment production in Staphylococcus aureus through a SigB-dependent mechanism. J. Bacteriol. 187: 8181-8184.   DOI
9 Lan L, Cheng A, Dunman PM, Missiakas D, He C. 2010. Golden pigment production and virulence gene expression are affected by metabolisms in Staphylococcus aureus. J. Bacteriol. 192: 3068-3077.   DOI
10 Cushnie TP, Lamb AJ. 2005. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 26: 343-356.   DOI
11 Bukowski M, Wladyka B, Dubin G. 2010. Exfoliative toxins of Staphylococcus aureus. Toxins 2: 1148-1165.   DOI
12 Tsompanidou E, Denham EL, Becher D, de Jong A, Buist G, van Oosten M, et al. 2013. Distinct roles of phenol-soluble modulins in spreading of Staphylococcus aureus on wet surfaces. Appl. Environ. Microbiol. 79: 886-895.   DOI
13 Schwartz K, Syed AK, Stephenson RE, Rickard AH, Boles BR. 2012. Functional amyloids composed of phenol soluble modulins stabilize Staphylococcus aureus biofilms. PLoS Pathog. 8: e1002744.   DOI
14 Wang R, Khan BA, Cheung GY, Bach TH, Jameson-Lee M, Kong KF, et al. 2011. Staphylococcus epidermidis surfactant peptides promote biofilm maturation and dissemination of biofilm-associated infection in mice. J. Clin. Invest. 121: 238-248.   DOI
15 Lobanovska M, Pilla G. 2017. Focus: Drug development: Penicillin's discovery and antibiotic resistance: Lessons for the future? Yale J. Biol. Med. 90: 135.
16 Hennekinne JA, De Buyser ML, Dragacci S. 2012. Staphylococcus aureus and its food poisoning toxins: characterization and outbreak investigation. FEMS Microbiol. Rev. 36: 815-836.   DOI
17 Rooijakkers SH, Ruyken M, Van Roon J, Van Kessel KP, Van Strijp JA, Van Wamel WJ. 2006. Early expression of SCIN and CHIPS drives instant immune evasion by Staphylococcus aureus. Cell. Microbiol. 8: 1282-1293.   DOI
18 Mishra NN, Liu GY, Yeaman MR, Nast CC, Proctor RA, McKinnell J, et al. 2011. Carotenoid-related alteration of cell membrane fluidity impacts Staphylococcus aureus susceptibility to host defense peptides. Antimicrob. Agents Chemother. 55: 526-531.   DOI
19 Craig EA, Schlesinger MJ. 1985. The heat shock respons. Critc. Rev. Biochem. 18: 239-280.   DOI
20 Wang R, Braughton KR, Kretschmer D, Bach T-HL, Queck SY, Li M, et al. 2007. Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA. Nat. Med. 13: 1510-1514.   DOI
21 Fey PD, Endres JL, Yajjala VK, Widhelm TJ, Boissy RJ, Bose JL, et al. 2013. A genetic resource for rapid and comprehensive phenotype screening of nonessential Staphylococcus aureus genes. mBio 4: e00537-00512.
22 Parsek MR, Singh PK. 2003. Bacterial biofilms: an emerging link to disease pathogenesis. Ann. Rev. Microbiol. 57: 677-701.   DOI
23 Lin C-F, Chen C-L, Huang W-C, Cheng Y-L, Hsieh C-Y, Wang C-Y, et al. 2010. Different types of cell death induced by enterotoxins. Toxins 2: 2158-2176.   DOI
24 McKevitt AI, Bjornson GL, Mauracher CA, Scheifele DW. 1990. Amino acid sequence of a deltalike toxin from Staphylococcus epidermidis. Infect. Immun. 58: 1473-1475.   DOI
25 Balaban N, Rasooly A. 2000. Staphylococcal enterotoxins. Int. J. Food Microbiol. 61: 1-10.   DOI
26 Rosenbach AJF. 1884. Mikro-organismen bei den Wund-infections-krankheiten des Menschen, Ed. JF Bergmann.
27 Anderson KL, Roberts C, Disz T, Vonstein V, Hwang K, Overbeek R, et al. 2006. Characterization of the Staphylococcus aureus heat shock, cold shock, stringent, and SOS responses and their effects on log-phase mRNA turnover. J. Bacteriol. 188: 6739-6756.   DOI
28 Costerton JW, Stewart PS, Greenberg EP. 1999. Bacterial bio-films: a common cause of persistent infections. Science 284: 1318-1322.   DOI
29 Scherr TD, Heim CE, Morrison JM, Kielian T. 2014. Hiding in plain sight: interplay between staphylococcal biofilms and host immunity. Front. Immunol. 5: 37.   DOI
30 Fitzpatrick F, Humphreys H, O'Gara JP. 2005. Evidence for icaADBC-independent biofilm development mechanism in methicillin-resistant Staphylococcus aureus clinical isolates. J. Clin. Microbiol. 43: 1973-1976.   DOI
31 Yarets Y, Rubanov L, Novikova I, Shevchenko N. 2013. The biofilm-forming capacity of Staphylococcus aureus from chronic wounds can be useful for determining Wound-Bed Preparation methods. EWMA J. 13: 7-14.
32 Otto M. 2008. Staphylococcal biofilms. Curr. Topics Microbiol. Immunol. 322: 207-228.
33 Mirani ZA, Aziz M, Khan MN, Lal I, ul Hassan N, Khan SI. 2013. Biofilm formation and dispersal of Staphylococcus aureus under the influence of oxacillin. Microb. Pathog. 61: 66-72.   DOI
34 Rooijakkers SH, van Kessel KP, van Strijp JA. 2005. Staphylococcal innate immune evasion. Trends Microbiol. 13: 596-601.   DOI
35 Rooijakkers SH, van Wamel WJ, Ruyken M, van Kessel KP, van Strijp JA. 2005. Anti-opsonic properties of staphylokinase. Microb. Infect. 7: 476-484.   DOI
36 Al Refaii A, Alix JH. 2009. Ribosome biogenesis is temperature-dependent and delayed in Escherichia coli lacking the chaperones DnaK or DnaJ. Mol. Microbiol. 71: 748-762.   DOI
37 Lee LYL, Hook M, Haviland D, Wetsel RA, Yonter EO, Syribeys P, et al. 2004. Inhibition of complement activation by a secreted Staphylococcus aureus protein. J. Infect. Dis. 190: 571-579.   DOI
38 de Haas CJ, Veldkamp KE, Peschel A, Weerkamp F, Van Wamel WJ, Heezius EC, et al. 2004. Chemotaxis inhibitory protein of Staphylococcus aureus, a bacterial antiinflammatory agent. J. Exp. Med. 199: 687-695.   DOI
39 Kiedrowski MR, Horswill AR. 2011. New approaches for treating staphylococcal biofilm infections. Annal. NY Acad. Sci. 1241: 104-121.   DOI
40 Hu B, Mayer MP, Tomita M. 2006. Modeling Hsp70-mediated protein folding. Biophys. J. 91: 496-507.   DOI
41 Singh VK, Sirobhushanam S, Ring RP, Singh S, Gatto C, Wilkinson BJ. 2018. Roles of pyruvate dehydrogenase and branchedchain α-keto acid dehydrogenase in branched-chain membrane fatty acid levels and associated functions in Staphylococcus aureus. J. Med. Microbiol. 67: 570.   DOI
42 Kakutani Y. 1967. Detection of some isoprenoids and the influence of diphenylamine on the biosynthesis of isoprenoid by Sporobolomyces shibatanus. J. Biochem. 61: 193-198.   DOI
43 Hammond RK, White DC. 1970. Inhibition of vitamin K2 and carotenoid synthesis in Staphylococcus aureus by diphenylamine. J. Bacteriol. 103: 611-615.   DOI
44 No JH, de Macedo Dossin F, Zhang Y, Liu Y-L, Zhu W, Feng X, et al. 2012. Lipophilic analogs of zoledronate and risedronate inhibit Plasmodium geranylgeranyl diphosphate synthase (GGPPS) and exhibit potent antimalarial activity. Proc. Natl. Acad. Sci. USA 109: 4058-4063.   DOI
45 Song Y, Liu CI, Lin FY, No JH, Hensler M, Liu YL, et al. 2009. Inhibition of staphyloxanthin virulence factor biosynthesis in Staphylococcus aureus: in vitro, in vivo, and crystallographic results. J. Med. Chem. 52: 3869-3880.   DOI
46 Chen F, Di H, Wang Y, Cao Q, Xu B, Zhang X, et al. 2016. Small-molecule targeting of a diapophytoene desaturase inhibits S. aureus virulence. Nat. Chem. Biol. 12: 174-179.   DOI
47 Hammond RK, White DC. 1970. Inhibition of vitamin K2 and carotenoid synthesis in Staphylococcus aureus by diphenylamine. J. Bacteriol. 103: 611-615.   DOI
48 Kong C, Neoh HM, Nathan S. 2016. Targeting Staphylococcus aureus toxins: A potential form of anti-virulence therapy. Toxins 8: 72.   DOI
49 Hall JW, Yang J, Guo H, Ji Y. 2017. The Staphylococcus aureus AirSR two-component system mediates reactive oxygen species resistance via transcriptional regulation of staphyloxanthin production. Infect. Immun. 85: e00838-00816.
50 Wang Y, Chen F, Di H, Xu Y, Xiao Q, Wang X, et al. 2016. Discovery of Potent benzofuran-derived diapophytoene desaturase (CrtN) inhibitors with enhanced oral bioavailability for the treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections. J. Med. Chem. 59: 3215-3230.   DOI
51 Voyich JM, Otto M, Mathema B, Braughton KR, Whitney AR, Welty D, et al. 2006. Is Panton-Valentine leukocidin the major virulence determinant in community-associated methicillin-resistant Staphylococcus aureus disease? J. Infect. Dis. 194: 1761-1770.   DOI
52 Vandenesch F, Lina G, Henry T. 2012. Staphylococcus aureus hemolysins, bi-component leukocidins, and cytolytic peptides: a redundant arsenal of membrane-damaging virulence factors? Front. Cell. Infect. Microbiol. 2: 12.
53 Lin Y-C, Peterson ML. 2010. New insights into the prevention of staphylococcal infections and toxic shock syndrome. Exp. Rev. Clin. Pharmacol. 3: 753-767.   DOI
54 Chowdhury T. 2014. Virtual screening of compounds derived from Garcinia pedunculata as an inhibitor of gamma hemolysin component A of Staphylo-coccus aureus. Bangladesh J. Pharmacol. 9: 67-71.   DOI
55 Genestier A-L, Michallet M-C, Prevost G, Bellot G, Chalabreysse L, Peyrol S, et al. 2005. Staphylococcus aureus Panton-Valentine leukocidin directly targets mitochondria and induces Bax-independent apoptosis of human neutrophils. J. Clin. Investig. 115: 3117-3127.   DOI
56 Sonnen AF, Henneke P. 2013. Role of pore-forming toxins in neonatal sepsis. Clin. Dev. Immunol. 2013: 608456.   DOI
57 Popov I, Kaprel'iants A, Ostrovskil D, Ignatov V. 1976. Study of the membranes of pigment-free mutant of Staphylococcus aureus. Biokhimiia (Moscow, Russia). 41: 1116-1120.
58 Mitchell G, Fugere A, Gaudreau KP, Brouillette E, Frost EH, Cantin AM, et al. 2013. SigB is a dominant regulator of virulence in Staphylococcus aureus small-colony variants. PLoS One 8: e65018.   DOI
59 Lee J-H, Park J-H, Cho MH, Lee J. 2012. Flavone reduces the production of virulence factors, staphyloxanthin and α-Hemolysin, in Staphylococcus aureus. Curr. Microbiol. 65: 726-732.   DOI
60 Nanra JS, Buitrago SM, Crawford S, Ng J, Fink PS, Hawkins J, et al. 2013. Capsular polysaccharides are an important immune evasion mechanism for Staphylococcus aureus. Hum. Vaccin. Immunother. 9: 480-487.   DOI
61 Limsuwan S, Voravuthikunchai SP. 2008. Boesenbergia pandurata (Roxb.) Schltr., Eleutherine americana Merr. and Rhodomyrtus tomentosa (Aiton) Hassk. as antibiofilm producing and antiquorum sensing in Streptococcus pyogenes. FEMS Immunol. Med. Microbiol. 53: 429-436.   DOI
62 Saising J, Hiranrat A, Mahabusarakam W, Ongsakul M, Voravuthikunchai SP. 2008. Rhodomyrtone from Rhodomyrtus tomentosa (Aiton) Hassk. as a natural antibiotic for Staphylococcal Cutaneous infections. J. Health Sci. 54: 589-595.   DOI
63 Leejae S, Hasap L, Voravuthikunchai SP. 2013. Inhibition of staphyloxanthin biosynthesis in Staphylococcus aureus by rhodomyrtone, a novel antibiotic candidate. J. Med. Microbiol. 62: 421-428.   DOI
64 Sakai K, Koyama N, Fukuda T, Mori Y, Onaka H, Tomoda H. 2012. Search method for inhibitors of Staphyloxanthin production by methicillin-resistant Staphylococcus aureus. Biol. Pharm. Bull. 35: 48-53.   DOI
65 Fukuda T, Tomoda H. 2013. Tylopilusin C, a new diphenolic compound from the fruiting bodies of Tylopilus eximinus. J. Antibiot. 66: 355-357.   DOI
66 Miller LG, Diep BA. 2008. Clinical practice: colonization, fomites, and virulence: rethinking the pathogenesis of community-associated methicillin-resistant Staphylococcus aureus infection. Clin. Infect. Dis. 46: 752-760.   DOI
67 Fukuda T, Shinkai M, Sasaki E, Nagai K, Kurihara Y, Kanamoto A, et al. 2015. Graphiumins, new thiodiketopiperazines from the marine-derived fungus Graphium sp. OPMF00224. J. Antibiot. 68: 620-627.   DOI
68 Pelz A, Wieland K-P, Putzbach K, Hentschel P, Albert K, Gotz F. 2005. Structure and biosynthesis of staphyloxanthin from Staphylococcus aureus. J. Biol. Chem. 280: 32493-32498.   DOI
69 Aires de Sousa M, de Lencastre H. 2004. Bridges from hospitals to the laboratory: genetic portraits of methicillin-resistant Staphylococcus aureus clones. FEMS Immunol. Med. Microbiol. 40: 101-111.   DOI
70 Lowy FD. 1998. Staphylococcus aureus infections. N. Engl. J. Med. 339: 520-532.   DOI
71 Gould D, Chamberlaine A. 1995. Staphylococcus aureus: a review of the literature. J. Clin. Nurs. 4: 5-12.   DOI
72 Fukuda T, Shimoyama K, Nagamitsu T, Tomoda H. 2014. Synthesis and biological activity of Citridone A and its derivatives. J. Antibiot. 67: 445-450.   DOI
73 Novick RP. 2003. Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol. Microbiol. 48: 1429-1449.   DOI
74 Baba T, Takeuchi F, Kuroda M, Yuzawa H, Aoki K-I, Oguchi A, et al. 2002. Genome and virulence determinants of high virulence community-acquired MRSA. Lancet 359: 1819-1827.   DOI
75 De la Fuente-Nunez C, Reffuveille F, Fernandez L, Hancock RE. 2013. Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies. Curr. Opin. Microbiol. 16: 580-589.   DOI
76 Burnside K, Lembo A, de Los Reyes M, Iliuk A, Binhtran NT, Connelly JE, et al. 2010. Regulation of hemolysin expression and virulence of Staphylococcus aureus by a serine/threonine kinase and phosphatase. PLoS One 5: e11071.   DOI
77 Holten KB, Onusko EM. 2000. Appropriate prescribing of oral beta-lactam antibiotics. Am. Fam. Physician 62: 611-620.
78 Linares J. 2001. The VISA/GISA problem: therapeutic implications. Clin. Microbiol. Infect. 7 Suppl 4: 8-15.   DOI
79 Garcia LG, Lemaire S, Kahl BC, Becker K, Proctor RA, Denis O, et al. 2013. Antibiotic activity against small-colony variants of Staphylococcus aureus: review of in vitro, animal and clinical data. J. Antimicrob. Chemother. 68: 1455-1464.   DOI
80 Foster TJ. 2004. The Staphylococcus aureus "superbug". J. Clin. Investig. 114: 1693-1696.   DOI
81 Zhu Y. 2010. Staphylococcus aureus virulence factors synthesis is controlled by central metabolism. Dissertations & Theses in Veterinary and Biomedical Science. 5.
82 Lowy FD. 1998. Staphylococcus aureus infections. New Engl. J. Med. 339: 520-532.   DOI
83 Siems W, Wiswedel I, Salerno C, Crifo C, Augustin W, Schild L, et al. 2005. β-Carotene breakdown products may impair mitochondrial functions-potential side effects of high-dose β-carotene supplementation. J. Nutr. Biochem. 16: 385-397.   DOI
84 Bien J, Sokolova O, Bozko P. 2011. Characterization of virulence factors of Staphylococcus aureus: Novel function of known virulence factors that are implicated in activation of airway epithelial proinflammatory response. J. Pathog. 2011: 601905.   DOI
85 Geoghegan JA, Corrigan RM, Gruszka DT, Speziale P, O'Gara JP, Potts JR, et al. 2010. Role of surface protein SasG in biofilm formation by Staphylococcus aureus. J. Bacteriol. 192: 5663-5673.   DOI
86 Bayer AS, Prasad R, Chandra J, Koul A, Smriti M, Varma A, et al. 2000. In vitro resistance of Staphylococcus aureus to thrombin-induced platelet microbicidal protein is associated with alterations in cytoplasmic membrane fluidity. Infect. Immun. 68: 3548-3553.   DOI
87 O'Riordan K, Lee JC. 2004. Staphylococcus aureus capsular polysaccharides. Clin. Microbiol. Rev. 17: 218-234.   DOI
88 Sabat A, Melles DC, Martirosian G, Grundmann H, van Belkum A, Hryniewicz W. 2006. Distribution of the serine-aspartate repeat protein-encoding sdr genes among nasal-carriage and invasive Staphylococcus aureus strains. J. Clin. Microbiol. 44: 1135-1138.   DOI
89 Clarke SR, Andre G, Walsh EJ, Dufrene YF, Foster TJ, Foster SJ. 2009. Iron-regulated surface determinant protein A mediates adhesion of Staphylococcus aureus to human corneocyte envelope proteins. Infect. Immun. 77: 2408-2416.   DOI
90 Clarke SR, Foster SJ. 2008. IsdA protects Staphylococcus aureus against the bactericidal protease activity of apolactoferrin. Infect. Immun. 76: 1518-1526.   DOI
91 Nilsson I-M, Lee JC, Bremell T, Ryden C, Tarkowski A. 1997. The role of staphylococcal polysaccharide microcapsule expression in septicemia and septic arthritis. Infect. Immun. 65: 4216-4221.   DOI
92 Gomez MI, Lee A, Reddy B, Muir A, Soong G, Pitt A, et al. 2004. Staphylococcus aureus protein A induces airway epithelial inflammatory responses by activating TNFR1. Nat. Med. 10: 842-848.   DOI
93 Sau S, Bhasin N, Wann ER, Lee JC, Foster TJ, Lee CY. 1997. The Staphylococcus aureus allelic genetic loci for serotype 5 and 8 capsule expression contain the type-specific genes flanked by common genes. Microbiology 143: 2395-2405.   DOI
94 Donlan RM, Costerton JW. 2002. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 15: 167-193.   DOI
95 Bischoff M, Dunman P, Kormanec J, Macapagal D, Murphy E, Mounts W, et al. 2004. Microarray-based analysis of the Staphylococcus aureus σB regulon. J. Bacteriol. 186: 4085-4099.   DOI
96 Ribeiro D, Freitas M, Silva AM, Carvalho F, Fernandes E. 2018. Antioxidant and pro-oxidant activities of carotenoids and their oxidation products. Food Chem. Toxicol. 120: 681-699.   DOI
97 Liu GY, Essex A, Buchanan JT, Datta V, Hoffman HM, Bastian JF, et al. 2005. Staphylococcus aureus golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity. J. Exp. Med. 202: 209-215.   DOI
98 Foster TJ, Geoghegan JA, Ganesh VK, Hook M. 2014. Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat. Rev. Microbiol. 12: 49-62.   DOI
99 George NP, Wei Q, Shin PK, Konstantopoulos K, Ross JM. 2006. Staphylococcus aureus adhesion via Spa, ClfA, and SdrCDE to immobilized platelets demonstrates shear-dependent behavior. Arterioscler. Thromb. Vasc. Biol. 26: 2394-2400.   DOI
100 Weinstein L, Fields BN. 1982. Seminars in infectious disease, 2: 256-303. Ed. Stratton Intercontinental Medical Book Corporation.
101 Wieland B, Feil C, Gloria-Maercker E, Thumm G, Lechner M, Bravo JM, et al. 1994. Genetic and biochemical analyses of the biosynthesis of the yellow carotenoid 4,4'-diaponeurosporene of Staphylococcus aureus. J. Bacteriol. 176: 7719-7726.   DOI
102 Clauditz A, Resch A, Wieland K-P, Peschel A, Gotz F. 2006. Staphyloxanthin plays a role in the fitness of Staphylococcus aureus and its ability to cope with oxidative stress. Infect. Immun. 74: 4950-4953.   DOI
103 Beard-Pegler MA, Stubbs E, Vickery AM. 1988. Observations on the resistance to drying of staphylococcal strains. J. Med. Microbiol. 26: 251-255.   DOI
104 Fang FC. 2004. Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat. Rev. Microbiol. 2: 820-832.   DOI
105 Marshall JH, Wilmoth GJ. 1981. Proposed pathway of triterpenoid carotenoid biosynthesis in Staphylococcus aureus: evidence from a study of mutants. J. Bacteriol. 147: 914-919.   DOI
106 Liu GY, Essex A, Buchanan JT, Datta V, Hoffman HM, Bastian JF, et al. 2005. Staphylococcus aureus golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity. J. Exp. Med. 202: 209-215.   DOI
107 Liu C-I, Liu GY, Song Y, Yin F, Hensler ME, Jeng W-Y, et al. 2008. A cholesterol biosynthesis inhibitor blocks Staphylococcus aureus virulence. Science 319: 1391-1394.   DOI
108 Arciola CR, Campoccia D, Speziale P, Montanaro L, Costerton JW. 2012. Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials 33: 5967-5982.   DOI
109 Kullik I, Giachino P, Fuchs T. 1998. Deletion of the alternative sigma factor is sigma B Staphylococcus aureus reveals its function as a global regulator of virulence genes. J. Bacteriol. 180: 4814-4820.   DOI
110 Giachino P, Engelmann S, Bischoff M. 2001. Sigma B activity depends on RsbU in Staphylococcus aureu. J. Bacteriol. 183: 1843-1852.   DOI
111 Muto CA, Jernigan JA, Ostrowsky BE, Richet HM, Jarvis WR, Boyce JM, et al. 2003. SHEA guideline for preventing nosocomial transmission of multidrug-resistant strains of Staphylococcus aureus and enterococcus. Infect. Control Hosp. Epidemiol. 24: 362-386.   DOI