Browse > Article
http://dx.doi.org/10.4490/algae.2021.36.3.6

Antibacterial compounds in green microalgae from extreme environments: a review  

Little, Shannon M. (Department of Biology, Laurentian University)
Senhorinho, Gerusa N.A. (Department of Biology, Laurentian University)
Saleh, Mazen (Department of Biology, Laurentian University)
Basiliko, Nathan (Department of Biology, Laurentian University)
Scott, John A. (Department of Biology, Laurentian University)
Publication Information
ALGAE / v.36, no.1, 2021 , pp. 61-72 More about this Journal
Abstract
Increased proliferation of bacterial resistance to antibiotics is a critical issue that has increased the demand for novel antibacterial compounds. Antibacterial activities have been evaluated in extracts from photosynthetic green microalgae, with varying levels of subsequent potential for development based on the strain of algae, strain of bacterial pathogen, and solvent used to extract the metabolites. Green microalgae from extreme environmental conditions have had to adapt to conditions that exclude many other organisms. The production of antibacterial compounds aids directly or indirectly in the survival of green microalgae in these extreme environments, as well as potentially serve other roles. This review investigates antibacterial activities of green microalgae from both extreme in-situ environmental conditions and induced extreme laboratory conditions and highlights.
Keywords
antibacterial activity; bioprospecting; environmental stress; extracts; green microalgae;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Alwathnani, H. & Perveen, K. 2017. Antibacterial activity and morphological changes in human pathogenic bacteria caused by Chlorella vulgaris extracts. Biomed. Res. 28:1610-1614.
2 Baba, M., Kikuta, F., Suzuki, I., Watanabe, M. M. & Shiraiwa, Y. 2012. Wavelength specificity of growth, photosynthesis, and hydrocarbon production in the oil-producing green alga Botryococcus braunii. Bioresour. Technol. 109:266-270.   DOI
3 Barkia, I., Saari, N. & Manning, S. R. 2019. Microalgae for high-value products towards human health and nutrition. Mar. Drugs 17:304.   DOI
4 Beutler, J. A. 2019. Natural products as a foundation for drug discovery. Curr. Protoc. Pharmacol. 86:e67.   DOI
5 Borowitzka, M. A. 1995. Microalgae as sources of pharmaceuticals and other biologically active compounds. J. Appl. Phycol. 7:3-15.   DOI
6 Burton, G. W. & Ingold, K. U. 1984. β-Carotene: an unusual type of lipid antioxidant. Science 224:569-573.   DOI
7 Cakmak, Y. S., Kaya, M. & Asan-Ozusaglam, M. 2014. Biochemical composition and bioactivity screening of various extracts from Dunaliella salina, a green microalga. EXCLI J. 13:679-690.
8 Cepak, V. & Pribyl, P. 2006.The effect of colour light on production of zooids in 10 strains of the green chlorococcal alga Scenedesmus obliquus. Czech Phycol. 6:127-133.
9 Najdenski, H. M., Gigova, L. G., Iliev, I. I., Pilarski, P. S., Lukavsky, J., Tsvetkova, I. V., Ninova, M. S. & Kussovski, V. K. 2013. Antibacterial and antifungal activities of selected microalgae and cyanobacteria. Int. J. Food Sci. Technol. 48:1533-1540.   DOI
10 Namdeo, A. G. 2007. Plant cell elicitation for production of secondary metabolites: a review. Pharmacogn. Rev. 1:69-79.
11 Navarro, F., Forjan, E., Vazquez, M., Toimil, A., Montero, Z., Ruiz-Dominguez, M. D. C., Garbayo, I., Castaño, M. A., Vilchez, C. & Vega, J. M. 2017. Antimicrobial activity of the acidophilic eukaryotic microalga Coccomyxa onubensis. Phycol. Res. 65:38-43.   DOI
12 Ohta, S., Chang, T., Kawashima, A., Nagate, T., Murase, M., Nakanishi, H., Miyata, H. & Kondo, M. 1994. Anti methicillin-resistant Staphylococcus aureus (MRSA) activity by linolenic acid isolated from the marine microalga Chlorococcum HS-101. Bull. Environ. Contam. Toxicol. 52:673-680.   DOI
13 Pratt, R., Daniels, T. C., Eiler, J. J., Gunnison, J. B., Kumler, W. D., Oneto, J. F., Strait, L. A., Spoehr, H. A., Hardin, G. J., Milner, H. W., Smith, J. H. C. & Strain, H. H. 1944. Chlorellin, an antibacterial substance from Chlorella. Science 99:351-352.   DOI
14 Challouf, R., Ben Dhieb, R., Omrane, H., Ghozzi, K. & Ben Ouada, H. 2012. Antibacterial, antioxidant and cytotoxic activities of extracts from the thermophilic green alga, Cosmarium sp. Afr. J. Biotechnol. 11:14844-14849.
15 Corona, E., Fernandez-Acero, J. & Bartual, A. 2017. Screening study for antibacterial activity from marine and freshwater microalgae. Int. J. Pharm. Bio Sci. 8:189-194.
16 Ohta, S., Shiomi, Y., Kawashima, A., Aozasa, O., Nakao, T., Nagate, T., Kitamura, K. & Miyata, H. 1995.Antibiotic effect of linolenic acid from Chlorococcum strain HS-101 and Dunaliella primolecta on methicillin-resistant Staphylococcus aureus. J. Appl. Phycol. 7:121-127.   DOI
17 Ordog, V., Stirk, W. A., Lenobel, R., Bancirova, M., Strnad, M., Van Staden, J., Szigeti, J. & Nemeth, L. 2004. Screening microalgae for some potentially useful agricultural and pharmaceutical secondary metabolites. J. Appl. Phycol. 16:309-314.   DOI
18 Pradhan, J., Das, S. & Das, B. K. 2014. Antibacterial activity of freshwater microalgae: a review. Afr. J. Pharm. Pharmacol. 8:809-818.   DOI
19 Cummings, D. E., March, A. W., Bostick, B., Spring, S., Caccavo, F. Jr., Fendorf, S. & Rosenzweig, R. F. 2000. Evidence for microbial Fe(III) reduction in anoxic, miningimpacted lake sediments (Lake Coeur d'Alene, Idaho). Appl. Environ. Microbiol. 66:154-162.   DOI
20 Costas, E., Flores-Moya, A. & Lopez-Rodas, V. 2008. Rapid adaptation of phytoplankters to geothermal waters is achieved by single mutations: were extreme environments "Noah's Arks" for photosynthesizers during the neoproterozoic "snowball Earth"? New Phytol. 180:922-932.   DOI
21 Das, B. K. & Pradhan, J. 2010. Antibacterial properties of selected freshwater microalgae against pathogenic bacteria. Indian J. Fish. 57:61-66.
22 Dineshkumar, R., Narendran, R., Jayasingam, P. & Sampathkumar, P. 2017. Cultivation and chemical composition of microalgae Chlorella vulgaris and its antibacterial activity against human pathogens. J. Aquac. Mar. Biol. 5:00119.
23 Elkomy, R., Ibraheem, I. B. M., Shreadah, M. & Mohammed, R. 2015. Optimal conditions for antimicrobial activity production from two microalgae Chlorella marina and Navicula f. delicatula. J. Pure Appl. Microbiol. 9:2725-2732.
24 Pulich, W. M. Jr. 1974. Resistance to high oxygen tension, streptonigrin, and ultraviolet irradiation in the green alga Chlorella sorokiniana strain ors. J. Cell Biol. 62:904-907.   DOI
25 Abdo, S. M., Hetta, M. H., Samhan, F. A., El Din, R. A. S. & Ali, G. H. 2012. Phytochemical and antibacterial study of five freshwater algal species. Asian J. Plant Sci. 11:109-116.   DOI
26 Abubakar, A. R. & Haque, M. 2020. Preparation of medicinal plants: basic extraction and fractionation procedures for experimental purposes. J. Pharm. Bioallied Sci. 12:1-10.   DOI
27 Al-Wathnani, H., Ara, I., Tahmaz, R. R., Al-Dayel, T. H. & Bakir, M. A. 2012. Bioactivity of natural compounds isolated from cyanobacteria and green algae against human pathogenic bacteria and yeast. J. Med. Plants Res. 6:3425-3433.
28 Fogg, G. E. 2001. Algal adaptations to stress: some general remarks. In Rai, L. C. & Gaur, J. P. (Eds.) Algal Adaptation to Environmental Stresses: Phycological, Biochemical and Molecular Mechanisms. Springer-Verlag, Berlin, pp. 1-20.
29 Forjan, E., Navarro, F., Cuaresma, M., Vaquero, I., RuizDominguez, M. C., Gojkovic, Z., Vazquez, M., Marquez, M., Mogedas, B., Bermejo, E., Girlich, S., Dominguez, M. J., Vilchez, C., Vega, J. M. & Garbayo, I. 2015. Microalgae: fast-growth sustainable green factories. Crit. Rev. Environ. Sci. Technol. 45:1705-1755.   DOI
30 Prochazkova, G., Branyikova, I., Zachleder, V. & Branyik, T. 2014. Effect of nutrient supply status on biomass composition of eukaryotic green microalgae. J. Appl. Phycol. 26:1359-1377.   DOI
31 Ribalet, F., Intertaglia, L., Lebaron, P. & Casotti, R. 2008. Differential effect of three polyunsaturated aldehydes on marine bacterial isolates. Aquat. Toxicol. 86:249-255.   DOI
32 Giddings, L. -A. & Newman, D. J. 2015b. Bioactive compounds from terrestrial extremophiles. In Tiquia-Arashiro, S. M. & Mormile, M. (Eds.) Extremophilic Bacteria. Springer International Publisher, Cham, pp. 1-75.
33 Fujita, Y., Ohki, K. & Murakami, A. 2001. Acclimation of photosynthetic light energy conversion to the light environments. In Rai, L. & Gaur, J. P. (Eds.) Algal Adaptation to Environmental Stresses: Phycological, Biochemical and Molecular Mechanisms. Springer-Verlag, Berlin, pp. 135-171.
34 Gerloff-Elias, A., Spijkerman, E. & Proschold, T. 2005. Effect of external pH on the growth, photosynthesis and photosynthetic electron transport of Chlamydomonas acidophila Negoro, isolated from an extremely acidic lake (pH 2.6). Plant Cell Environ. 28:1218-1229.   DOI
35 Giddings, L. -A. & Newman, D. J. 2015a. Bioactive compounds from marine extremophiles. In Tiquia-Arashiro, S. M. & Mormile, M. (Eds.) Extremophilic Bacteria. Springer International Publisher, New York, pp. 1-124.
36 Santhakumaran, P., Kookal, S. K., Mathew, L. & Ray, J. G. 2020b. Experimental evaluation of the culture parameters for optimum yield of lipids and other nutraceutically valuable compounds in Chloroidium saccharophillum (Kruger) comb. Nov. Renew. Energy 147:1082-1097.   DOI
37 Rindi, F., Allali, H. A., Lam, D. W. & Lopez-Bautista, J. M. 2011. An overview of the biodiversity and biogeography of terrestrial green algae. In Rescigno, V. & Maletta, S. (Ed.) Biodiversity Hotspots. Nova Science Publishers Inc., Hauppauge, NY, pp. 5-9.
38 Ruffell, S. E., Muller, K. M. & McConkey, B. J. 2016. Comparative assessment of microalgal fatty acids as topical antibiotics. J. Appl. Phycol. 28:1695-1704.   DOI
39 Santhakumaran, P., Ayyappan, S. M. & Ray, J. G. 2020a. Nutraceutical applications of twenty-five species of rapidgrowing green-microalgae as indicated by their antibacterial, antioxidant and mineral content. Algal Res. 47:101878.   DOI
40 Schuelter, A. R., Kroumov, A. D., Hinterholz, C. L., Fiorini, A., Trigueros, D. E. G., Vendruscolo, E. G., Zaharieva, M. M. & Modenes, A. N. 2019. Isolation and identification of new microalgae strains with antibacterial activity on food-borne pathogens: engineering approach to optimize synthesis of desired metabolites. Biochem. Eng. J. 144:28-39.   DOI
41 Hem, J. D. 1972. Chemical factors that influence the availability of iron and manganese in aqueous systems. Geol. Soc. Am. Bull. 83:443-450.   DOI
42 Gimmler, H. 2001. Acidophilic and Acidotolerant Algae. In Rai, L. C. & Gaur, J. P. (Eds.) Algal Adaptation to Environmental Stresses: Phycological, Biochemical and Molecular Mechanisms. Springer-Verlag, Berlin, pp. 259-290.
43 Grobbelaar, J. U. 2013. Inorganic algal nutrition. In Richmond, A. & Hu, Q. (Eds.) Handbook of Microalgal Culture: Applied Phycology and Biotechnology. 2nd ed. Blackwell Publishing Ltd., Hoboken, NJ, pp. 123-133.
44 Hamouda, R. A. E. & Abou-El-Souod, G. W. 2018. Influence of various concentrations of phosphorus on the antibacterial, antioxidant and bioactive components of green microalgae scenedesmus obliquus. Int. J. Pharmacol. 14:99-107.   DOI
45 Weinstein, M. P. & Lewis, J. S. 2020. The Clinical and Laboratory Standards Institute Subcommittee on Antimicrobial Susceptibility Testing: background, organization, functions, and processes. J. Clin. Microbiol. 58:e01864-19.
46 Senhorinho, G. N. A., Laamanen, C. A. & Scott, J. A. 2018. Bioprospecting freshwater microalgae for antibacterial activity from water bodies associated with abandoned mine sites. Phycologia 57:432-439.   DOI
47 Senhorinho, G. N. A., Ross, G. M. & Scott, J. A. 2015. Cyanobacteria and eukaryotic microalgae as potential sources of antibiotics. Phycologia 54:271-282.   DOI
48 Shannon, E. & Abu-Ghannam, N. 2016. Antibacterial derivatives of marine algae: an overview of pharmacological mechanisms and applications. Mar. Drugs 14:81.   DOI
49 Tas, B., Erturk, O., Yilmaz, O., Ayvaz, M. C. & Erturk, E. Y. 2015. Chemical components and biological activities of two freshwater green algae from Ordu, Turkey. Turk. J. Biochem. 40:508-517.   DOI
50 Vidoudez, C. & Pohnert, G. 2008. Growth phase-specific release of polyunsaturated aldehydes by the diatom Skeletonema marinoi. J. Plankton Res. 30:1305-1313.   DOI
51 Xin, L., Hong-ying, H. & Yu-ping, Z. 2011. Growth and lipid accumulation properties of a freshwater microalga Scenedesmus sp. under different cultivation temperature. Bioresour. Technol. 102:3098-3102.   DOI
52 Xiong, F., Kopecky, J. & Nedbal, L. 1999. The occurrence of UV-B absorbing mycosporine-like amino acids in freshwater and terrestrial microalgae (Chlorophyta). Aquat. Bot. 63:37-49.   DOI
53 Yoshida, N., Ikeda, R. & Okuno, T. 2006. Identification and characterization of heavy metal-resistant unicellular alga isolated from soil and its potential for phytoremediation. Bioresour. Technol. 97:1843-1849.   DOI
54 Leflaive, J. P. & Ten-Hage, L. 2007. Algal and cyanobacterial secondary metabolites in freshwaters: a comparison of allelopathic compounds and toxins. Freshw. Biol. 52:199-214.   DOI
55 Zhou, G. -J., Ying, G. -G., Liu, S., Zhou, L. -J., Chen, Z. -F. & Peng, F. -Q. 2014. Simultaneous removal of inorganic and organic compounds in wastewater by freshwater green microalgae. Environ. Sci. Process. Impacts 16:2018-2027.   DOI
56 Zygler, A., Slominska, M. & Namiesnik, J. 2012. Soxhlet extraction and new developments such as Soxtec. In Pawliszyn, J. (Ed.) Comprehensive Sampling and Sample Preparation: Analytical Techniques for Scientists. Vol. 2. Elsevier, Amsterdam, pp. 65-82.
57 Hu, Q. 2013. Environmental effects on cell composition. In Richmond, A. & Hu, Q. (Eds.) Handbook of Microalgal Culture: Applied Phycology and Biotechnology. 2nd ed. Blackwell Publishing Ltd., Hoboken, NJ, pp. 114-122.
58 Jafari, S., Mobasher, M. A., Najafipour, S., Ghasemi, Y., Mohkam, M., Ebrahimi, M. A. & Mobasher, N. 2018. Antibacterial potential of Chlorella vulgaris and Dunaliella salina extracts against Streptococcus mutans. Jundishapur J. Nat. Pharm. Prod. 13:e13226.
59 Kilic, N. K., Erdem, K. & Donmez, G. 2018. Bioactive compounds produced by Dunaliella species, antimicrobial effects and optimization of the efficiency. Turk. J. Fish. Aquat. Sci. 19:923-933.
60 Lo Grasso, L., Chillura-Martino, D. & Alduina, R. 2016. Production of antibacterial compounds from actinomycetes. In Dhanasekaran, D. & Jiang, Y. (Eds.) Actinobacteria: Basics and Biotechnological Applications. Intech, Rijeka, pp. 177-198.
61 Mezzari, M. P., Prandini, J. M., Kich, J. D. & Silva, M. L. B. D. 2017. Elimination of antibiotic multi-resistant Salmonella typhimurium from swine wastewater by microalgae-induced antibacterial mechanisms. J. Bioremediat. Biodegrad. 8:379.
62 Lustigman, B. 1988. Comparison of antibiotic production from four ecotypes of the marine alga, Dunaliella. Bull. Environ. Contam. Toxicol. 40:18-22.   DOI
63 Malik, V. S. 1980. Microbial secondary metabolism. Trends Biochem. Sci. 5:68-72.   DOI
64 Masojidek, J., Torzillo, G. & Koblizek, M. 2013. Photosynthesis in microalgae. In Richmond, A. & Hu, Q. (Eds.) Handbook of Microalgal Culture: Applied Phycology and Biotechnology. 2nd ed. Blackwell Publishing Ltd., Hoboken, NJ, pp. 21-36.