• Title/Summary/Keyword: Normal Equation

Search Result 870, Processing Time 0.03 seconds

ON THE GROWTH OF ALGEBROID SOLUTIONS OF ALGEBRAIC DIFFERENTIAL EQUATIONS

  • Manli Liu;Linlin Wu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.3
    • /
    • pp.597-610
    • /
    • 2024
  • Using the Nevanlinna value distribution theory of algebroid functions, this paper investigates the growth of two types of complex algebraic differential equation with algebroid solutions and obtains two results, which extend the growth of complex algebraic differential equation with meromorphic solutions obtained by Gao [4].

Explicit Equations of Normal Depth for Drainage Pipes (하수관 등류수심 양해법 산정식)

  • Yoo, Dong-Hoon;Rho, Jung-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.7 s.156
    • /
    • pp.527-535
    • /
    • 2005
  • The computation of normal depth is very important for the design of channel and the analysis of water flow. Drainage pipe generally has the shape of curvature like circular or U-type, which is different from artificial triangular or rectangular channel. In this case, the computation of normal depth or the derivation of equations is very difficult because the change of hydraulic radius and area versus depth is not simple. If the ratio of the area to the diameter, or the hydraulic radius to the diameter of pipe is expressed as the water depth to the diameter of pipe by power law, however, the process of computing normal depth becomes relatively simple, and explicit equations can be obtained. In the present study, developed are the explicit normal depth equations for circular and U-type pipes, and the normal depth equation associated with Hagen (Manning) equation and friction factor equation of smooth turbulent flow by power law is also proposed because of its wide usage in engineering design.

One-dimensional modeling of flat sheet casting or rectangular Fiber spinning process and the effect of normal stresses

  • Kwon, Youngdon
    • Korea-Australia Rheology Journal
    • /
    • v.11 no.3
    • /
    • pp.225-232
    • /
    • 1999
  • This study presents 1-dimensional simple model for sheet casting or rectangular fiber spinning process. In order to achieve this goal, we introduce the concept of force flux balance at the die exit, which assigns for the extensional flow outside the die the initial condition containing the information of shear flow history inside the die. With the Leonov constitutive equation that predicts non-vanishing second normal stress difference in shear flow, we are able to describe the anisotropic swelling behavior of the extrudate at least qualitatively. In other words, the negative value of the second normal stress difference causes thickness swelling much higher than width of extrudate. This result implies the importance of choosing the rheological model in the analysis of polymer processing operations, since the constitutive equation with the vanishing second normal stress difference is shown to exhibit the characteristic of isotropic swelling, that is, the thickness swell ratio always equal to the ratio in width direction.

  • PDF

THE ZEROS DISTRIBUTION OF SOLUTIONS OF HIGHER ORDER DIFFERENTIAL EQUATIONS IN AN ANGULAR DOMAIN

  • Huang, Zhibo;Chen, Zongxuan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.3
    • /
    • pp.443-454
    • /
    • 2010
  • In this paper, we investigate the zeros distribution and Borel direction for the solutions of linear homogeneous differential equation $f^{(n)}+A_{n-2}(z)f^{(n-2)}+{\cdots}+A_1(z)f'+A_0(z)f=0(n{\geq}2)$ in an angular domain. Especially, we establish a relation between a cluster ray of zeros and Borel direction.

NEW ITERATIVE PROCESS FOR THE EQUATION INVOLVING STRONGLY ACCRETIVE OPERATORS IN BANACH SPACES

  • Zeng, Ling-Yan;Li, Jun;Kim, Jong-Kyu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.4
    • /
    • pp.861-870
    • /
    • 2007
  • In this paper, under suitable conditions, we show that the new class of iterative process with errors introduced by Li et al converges strongly to the unique solution of the equation involving strongly accretive operators in real Banach spaces. Furthermore, we prove that it is equivalent to the classical Ishikawa iterative sequence with errors.

THE METHOD OF LOWER AND UPPER SOLUTIONS FOR IMPULSIVE FRACTIONAL EVOLUTION EQUATIONS IN BANACH SPACES

  • Gou, Haide;Li, Yongxiang
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.1
    • /
    • pp.61-88
    • /
    • 2020
  • In this paper, we investigate the existence of mild solutions for a class of fractional impulsive evolution equation with periodic boundary condition by means of the method of upper and lower solutions and monotone iterative method. Using the theory of Kuratowski measure of noncompactness, a series of results about mild solutions are obtained. Finally, two examples are given to illustrate our results.

ITERATIVE SOLUTIONS TO NONLINEAR EQUATIONS OF THE ACCRETIVE TYPE IN BANACH SPACES

  • Liu, Zeqing;Zhang, Lili;Kang, Shin-Min
    • East Asian mathematical journal
    • /
    • v.17 no.2
    • /
    • pp.265-273
    • /
    • 2001
  • In this paper, we prove that under certain conditions the Ishikawa iterative method with errors converges strongly to the unique solution of the nonlinear strongly accretive operator equation Tx=f. Related results deal with the solution of the equation x+Tx=f. Our results extend and improve the corresponding results of Liu, Childume, Childume-Osilike, Tan-Xu, Deng, Deng-Ding and others.

  • PDF