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ABSTRACT. In this paper, we present the explicit formula of the generalized inverse A(T% )S,
and we apply this result to solve restricted linear equation Az +y =0b, z €T, y € S and
Ar+By=b, z€T, yeS.

1. Introduction

In their seminal paper, [2] Bott and Duffin introduced and widely used an impor-
tant tool called the “constrained inverse” of the matrix. This inverse is called Bott-
Duffin inverse(AE;)l) = Pr(APr+ Ppi)~1), Ben Israel and Greville in [1] have men-
tioned many properties and applications. Later, Y. Chen in his paper [5] defined the
generalized Bott-Duffin inverse and gave some properties and applications, G. Chen,
G. Liu, Y. Xue in papers [3], [4], [6] defined L-zero matrices in order to simplify
the expression of the generalized Bott-Duffin inverse(AE;i = Pr(APr + Pp)™).

In [10], we have discussed another constrained inverse A(T_,Sl), which is defined by

Agpjé) = Prs(APr s+ Psr)~! of amatrix A € C"*", where T and S are subspaces
of C™ such that Té&.S = C™. Through considering the properties of this constrained
inverse, we establish the relation between the common important generalized inverse
and the inverse, see Lemma 4 and Lemma 5.

It is well known that many common important generalized inverse such as the
Moore-Penrose inverse A1, the Drazin inverse A, the Group inverse A#, the
Boot-Duffin inverse AE;; ) and so on, are all generalized inverse Ag )S, which is a

{2}-inverse of A having the prescribed range T' and null space S. In this paper, we
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present the explicit formula of the generalized inverse Ag? )S, i.e., we also establish

the relation between the Ag )S and the inverse, and we apply this result to solve
restricted linear equations

(1.1) Az +y=b, ze€T,yes
and
(1.2) Ar+By=5b, zeT, yeb.

We adopt in this paper the same notations on generalized inverse of matrices
as those in [1]. And throughout the article (if we don’t mention specially). Let I
be the identity (unit) matrix, e; be the ith column of I. A € C}"*™ and let T be a
subspace of C™, S be a subspace of C™, with dim(T") = r < ¢, and dim(S) = m —r.
Let {e1,e2, - ,&,} be the basis of T, and {e1,e3, -+ ,&,} be the basis of C™. Let
{Nr41,° -+ yMm} be the basis of S, and {n1,--- ,nm} be the basis of C™. Let

E1:(517527"' 757’)7 E2:(5r+175r+27"' ;5n)7 E:(E17E2)~

Fy= (im0 me)s Fo= (et Meg2s o0 sim),  F = (F1, Fa).
For any A € C™*™, we denote by

R(A) = {yeC™:y= Az for some z € C"} : the Range of A.
N(A) = {ze€C":Azx=0}: the Null space of A.

Lemma 1 ([1]). Let A € C"*" and let T be a subspace of C™, let S be a subspace
of C™, dim(T) = r < t, dim(S) = m —r. Then A has a {2}-inverse X such that
R(X)=T, N(X) =S if and only if one of the following conditions is satisfied:

(1) AT® S =C™,

(2) A*SteTt=Cm

(3) Pg AT = S+,

(4) PrA*St =T.

in which case X is unique.

Lemma 2 ([7], [8]). Let A € C"*™, T be a subspace of C™, b € AT, TNN(A) = 0.
Then the unique solution of Ax =b,(x € T') is given by x = Aggb for any subspace
of S of C™ satisfying AT &S =C™.

Lemma 3 ([9]). Let A€ C™*", Be CI"*™, and C € C*™. Then:

(1.3) R(AC) = R(A) = B~'R(BA)
N(BA) = N(A) = CN(AC)
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Lemma 4 ([10]). If A € C™*", then
(1) A+ = A*<AA* + PN(A*))_l
(2) AT = (A" A+ Py(a)) 'A%

Lemma 5 ([10]).
(1) If Ae C™™ and ind(A)=1, then
A® = Preay,nay(A + Priayra)
(2) If Ae C™™ and ind(A) =k > 1, then VI > k

A = Prany, Ny (APriaty nany + Priany, rean)

2. Main results

Theorem 1. Let A € C"*" and let T be a subspace of C™, let S be a subspace of
C™ dim(T) =r <t,dim(S)=m —1r and AT &S =C™. Then:

(21) ADy = PrE (é) (APLE (é) + PgF), <é) eCc™ M ifm<n

(22) APy =PrE(I 0)(APrE(I 0)+PsF)", (I 0)eC™™, ifn<m

(2.3) ARy = (B1,0)(AEy, Fy) ™
= (517527"' 557‘707"' )O)(A615A527"' 5A€T777T+1a"' 777771)_1’ (E17O) S C7L><7n-

Proof. From PrE = Pr(ei, e, - ,en) = (1,62, ,&4,0,---,0), it follows
that Pr = (e1,e2, - ,6,,0,--,0)(e1,62, -+ ,en) ' = (E1,00E~! and Ps =

I
(07"'aO’nT-O-lv"'777m)(7717"”77m)71 = (OaFQ)Fil' So APTE 0 +PSF‘ =

(Aet, Aca, -+ Ae, i1, ). From AT®S = C" and Aspan{er, 3, e, } =
AT, we can easily get (Aey, Aeg, -+, Aer, Nrg1, -+ ,Mm) is nonsingular. Let

D = PrE (é) (APrE (é) + PsF)~ L

Thus

D = (517627"'557‘,07"',0> (é) (A(€1762a"'75’m07"'a0) (é)
+ (07 707777“-‘1-1’" : 777771))_1 = (E170)(AE17F2)_1’ (El’o) € Cnxm'
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For (AE,, F») is nonsingular, we can get R(D) = R(E1,0) = T. From Lemma 3,
N(D) = (AE,, F5)N(E4,0).

Z1 Z1
T2 T2
Let x = | . | € N(E1,0), then (1,2, ,6+,0,---,0) | . | =0=x1617+---+
Ln Ln
TpEp. Since €1,€9,- - , €, are linear independence, we can get t1 = x5 =+ =z, =
0. So we can take e, 41, -+ , e, as the basis of N(E7,0). Then

N(D) = (AEy, F5)N(E1,0) = (AEq, Fa)span{e;41,- -+ ,en} = span{nei1,- -+ ,Mm} = S.

DAD = (FE1,0)(AEy, F>) 'A(E1,0)(AEy, Fy) !
= (E1,0)(AEy, Fy) " ((AEy, Fy) — (0, F»))(AE,, Fp)
= (E1,0)(AEy, Fy) ™' — (B1,0)(AEy, F2) N0, F2)(AEy, Fy) 7t
= D —D(0,F)(AE, F>) ™t
From N(D) = S, it follows that D(0, F3)(AE;, F2)~! =0,s0 DAD = D, N(D) = S

and R(D) =T. From Lemma 1(the uniqueness of A(T%)b«), we get (5) and (8). In an
analogous manner, we can also get (6). O

Remark. Common important generalized inverse such as the Moore-Penrose in-
verse AT, the Drazin inverse A(®, the Group inverse A#, the Boot-Duffin inverse
Agz)l ) are all generalized inverse A% )S, from (7) or (8), we can get explicit formulas
of these important generalized inverse when we take different T" and S.

In [1], it has discussed the solution of the equation Az +y =b, z € L, y € L+,
similarly we can get next theorem.

Theorem 2. Let A € C"™" and let T be a subspace of C™, let S be a subspace of
C™, dim(T) =r <t,dim(S)=m—r and AT ® S =C™. Then:

Az +y=b, x €T, yes,
has for every b, the unique solution
2
(2.4) x AZb,
2
(2.5) y = (I-AAPD.

Proof. Firstly, we will prove Az +y =b, x € T, y € S has solution is equivalent to
that

(2.6) (APrE (é) + PsF)z=b
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has solution, when m < n.

(Sufficiency) (2.6) has solution, then take x = PrFE <é> 2€T, y=PsFeS.

21
22
(Necessity) Vz=| . |,
Zm
z1 z1
T 22 22
Zm Zm
=nder+ -tz Aer + Zep1 e o F Zmlm
= A(z1e1 ++ + 2060) + Zeg10r1 + 00 Zmlim
=Az+y=0.
Since €1, €9, -+ , &, are the basis of T, 1,41, , Ny, are the basisof S,z € T, y € S,
we can solve z. From AT®S = C™, we have known APrFE (é) + Pg F' is nonsingular.

1
0
1). When n < m, we can get the conclusion similarly.

So Az+y = bhassolution x = PrE (é) (APrE < >+P5F)1b = Aggb (Theorem

Remark. Only b € AT, Ax = b, x € T is consistent and has a solution. It is the
case that Lemma 2 has discussed. But when AT®S = C™, Ax+y=0b, x €T, ye S
is always consistent and has a unique solution.

Example.
Arx+y=0b, z € R(A"), y € N(A").

1 0 -1 0 0
01 1 o0 1
A= 10 0 1}’ b= 1
2 1 0 1 0
From Theorem 2, we know x = A™b.
1 0 1 1
. 0 1 0 1
Taking €1 = =Tl
0 0 1 -1
2 -1 3 1 =3

o2 -2
-2 -1 3
1 1 1 -1

Then A(51,€2,€3) = . (A51,A523A53a774)71 =

—
[an}

w N O
O~ =
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At = (8176%5370)(1461,1452,A€3,774)_1 =3

—
O O = =

z=Atb= , y=b—Ax =

(SIS NI

1
2

NI O O

Similar to Theorem 1 and Theorem 2, we can get

Theorem 3. Let A € C;"*",B € C"™*™ m < n and let T be a subspace of C™,
let S be a subspace of C™, dAim(T) = r < t, dim(S) =m — r and AT & BS = C™,
then

Ar+By=0b, x2z€T, yes,

has for every b, the unique solution

2.7) ¢ = PrE (é) (APrE (é) + BPsF)~ 0,
(2.8) y = PsF(APrE (é) + BPsF)™ .

Theorem 4. Let A€ C}*",B € C"*™ and T, S be a subspace of C™, dim(T) =
r<t,dim(S)=n—r, AT®BS=C" and T ® BS = C", then

(2.9) PrE(APrE + BPsF) ™' = (APr ps) s
Proof. Similar to Theorem 2, since AT & BS = C", APrE é + BPsF is
nonsingular. Let {e1,e2, -+ ,&.} be the basis of T, {e1,e2, - ,e,} be the ba-

sis of C™, {Ny41,-++ ,Mn} be the basis of S, and {1, --,n,} be another ba-
SiS Of On E1 = (81,62,"' ,6,«), E2 = (€7~+1,€2,"' ,{5”)7 E = (El,EQ). F1 =
(7717"' 7777‘)7 F2 = (777“+13"' 777n)> F= (FlaFQ)' Let
D = PrE(APrE + BPsF)™*
= (517527"' 767"70a"' 70)(A51;A€27"' 7A€7~,BT]7~+1,"' 7B77n)71-

So R(D) = R(e1,e2, -+ ,&+) = T. From Lemma 3,

N(D> = (A€17A52a"' 7A€T7‘B77T+17"' ,B’I’]n)N((€1,EQ,"' 7ET707"' 70))
= (A51>A€2a"' 7A5T,B77T+1a"' 7B77n)8pan{e7“+lv"' 7€n}
= Span{BnT+1a T 7B77n} = BS.
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DAPr psD = PrE(APrE + BPsF) *APr gsPrE(APrE + BPsF) ™!
= PrE(APrE + BPsF) ' APrE(APrE 4+ BPsF) ™!
= PrE(APrE + BPsF) ' (APrE + BPsF — BPsF)(APrE + BPsF) ™!
= D — DBPsF(APpE + BPsF) ™t

R(BPsF(APrE + BPsF)™') = R(BPsF) = span{Bn,+1, -+ ,Bn,} = N(D). So
DBPsF(APrE + BPsF)™! = 0, i.e., DAPr gsD = D. From the uniqueness of

Ag )57 we can get the conclusion. O
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