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THE METHOD OF LOWER AND UPPER SOLUTIONS FOR

IMPULSIVE FRACTIONAL EVOLUTION EQUATIONS IN

BANACH SPACES

Haide Gou and Yongxiang Li

Abstract. In this paper, we investigate the existence of mild solutions
for a class of fractional impulsive evolution equation with periodic bound-

ary condition by means of the method of upper and lower solutions and

monotone iterative method. Using the theory of Kuratowski measure of
noncompactness, a series of results about mild solutions are obtained.

Finally, two examples are given to illustrate our results.

1. Introduction

Fractional differential equations arise in many engineering and scientific dis-
ciplines as the mathematical modeling of systems and processes in the fields of
physics, chemistry, aerodynamics, electrodynamics of complex medium, poly-
mer rheology, and they have been emerging as an important area of investiga-
tion in the last few decades; see [1, 3–5,7, 8, 10,12,16,22,24,31–33].

The theory of impulsive differential equations is a new and important branch
of differential equation theory, which has an extensive physical, population
dynamics, ecology, chemical, biological systems, and engineering background.
Therefore, it has been an object of intensive investigation in recent years,
some basic results on impulsive differential equations have been obtained and
applications to different areas have been considered by many authors, see
[22,24,25,27,28,30].

The monotone iterative technique in the presence of lower and upper solu-
tions is an important method for seeking solutions of differential equations in
abstract spaces. Recently, Chen and Li [9], Du and Lakshmikantham [11], Sun
and Zhao [23] investigated the existence of minimal and maximal solutions to
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initial value problem of ordinary differential equation without impulse by using
the method of upper and lower solutions and the monotone iterative technique.

In [19,20], Mu et al. use the monotone iterative technique to investigate the
existence and uniqueness of mild solutions of the impulsive fractional evolution
equations in an order Banach space E: Dαu(t) +Au(t) = f(t, u(t)), t ∈ J, t 6= tk,

∆u|t=tk = Ik(u(tk)), k = 1, 2, . . . ,m,
u(0) = x0 ∈ E,

and the problem Dαu(t) +Au(t) = f(t, u(t)), t ∈ J, t 6= tk,
∆u|t=tk = Ik(u(tk)), k = 1, 2, . . . ,m,
u(0) + g(u) = x0 ∈ E,

where Dα is the Caputo fractional derivative of order α ∈ (0, 1), A : D(A) ⊂
E → E be a closed linear operator and −A generates a C0-semigroup T (t)(t ≥
0). Furthermore, the theory of boundary value problems for nonlinear impulsive
fractional evolution equations is still in the initial stages and many aspects of
this theory need to be explored.

On the other hand, due to the periodic boundary problems for fractional
differential equations serve as a class of important models to study the dynamics
of processes that are subject to periodic changes in their initial state and final
state. In [17], Li et al. use a monotone iterative method in the presence of lower
and upper solutions to discuss the existence and uniqueness of mild solutions
for the boundary value problem of impulsive evolution equation in an ordered
Banach space E: u′(t) +Au(t) = f(t, u(t), Fu(t), Gu(t)), t ∈ J, t 6= tk,

∆u|t=tk = Ik(u(tk)), k = 1, 2, . . . ,m,
u(0) = u(ω),

where A : D(A) ⊂ E → E is a closed linear operator and −A generates a
C0-semigroup T (t)(t ≥ 0) in E. Under wide monotonicity conditions and the
non-compactness measure condition of the nonlinearity f , authors obtain the
existence of extremal mild solutions and a unique mild solution between lower
and upper solutions requiring only that −A generates a C0-semigroup.

However, there are few results on the theory on periodic boundary problems
for fractional evolution equations in infinite dimensional spaces. Since the un-
bounded operator is involved in the fractional evolution equations, it is obvious
that periodic boundary problems for fractional evolution equations are much
more difficult than the same problems for fractional differential equations. Fur-
thermore, to the best of our knowledge, the theory of periodic boundary value
problems for nonlinear impulsive fractional evolution equations is still in the
initial stages and many aspects of this theory need to be explored, motivated by
the above those works, in this paper, we use a monotone iterative method in the
presence of lower and upper solutions to discuss the existence and uniqueness
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of mild solutions for the periodic boundary value problem (PBVP) of impulsive
fractional evolution equations of Volterra type in an ordered Banach space E

(1)


cDα

0+u(t) +Au(t) = f(t, u(t), Fu(t), Gu(t)), t ∈ J, t 6= tk,
∆u|t=tk = Ik(u(tk)), k = 1, 2, . . . ,m,
u(0) = u(ω),

where cDα
0+ is the Caputo fractional derivative of order α ∈ (0, 1) with the lower

limit zero, A : D(A) ⊂ E → E be a closed linear operator and −A generates a
C0-semigroup T (t)(t ≥ 0) in E; f ∈ C(J × E × E × E,E), Ik ∈ C(E,E) is an
impulsive function, k = 1, 2, . . . ,m; J = [0, ω], J ′ = J \ {t1, t2, . . . , tm}, J0 =
[0, t1], Jk = (tk, tk+1], the {tk} satisfy 0 = t0 < t1 < t2 < · · · < tm < tm+1 = ω,
m ∈ N ; ∆u(tk) = u(t+k ) − u(t−k ), u(t+k ) and u(t−k ) represent the right and left
limits of u(t) at t = tk respectively, the operators Fu and Gu are given by

Fu(t) =

∫ t

0

K(t, s)u(s)ds, K ∈ C(D,R+),

Gu(t) =

∫ ω

0

H(t, s)u(s)ds, H ∈ C(D0, R
+),

D = {(t, s) ∈ R2 : 0 ≤ s ≤ t ≤ ω}, D0 = {(t, s) ∈ R2 : 0 ≤ t, s ≤ ω}.
The paper is organized as follows: In Section 2 we recall some basic known

results and introduce some notations. In Section 3 we discuss the existence the-
orem for periodic boundary value problem (1). Two examples will be presented
in Section 4 illustrating our results.

2. Preliminaries

Let E be an ordered Banach space with the norm ‖ · ‖ and partial order ≤,
whose positive cone P = {x ∈ E : x ≥ 0} is normal with normal constant N .
Let C(J,E) denote the Banach space of all continuous E-value functions on
interval J with the norm ‖u‖C = maxt∈J ‖u(t)‖. Evidently, C(J,E) is also an
ordered Banach space reduced by the convex cone P ′ = {u ∈ E |u(t) ≥ 0, t ∈
J}, and P ′ is also a normal cone.

Let PC(J,E) = {u : J → E, u(t) is continuous at t 6= tk, and left continuous
at t = tk, and u(t+k ) exists, k = 1, 2, . . . ,m}. Evidently, PC(J,E) is a Banach
space with the norm ‖u‖PC = supt∈J ‖u(t)‖. PC(J,E) is also an ordered
Banach space with the partial order ≤ induced by the positive cone KPC =
{u ∈ PC(J,E) : u(t) ≥ 0, t ∈ J} which is also normal with the same normal
constant N . We use E1 to denote the Banach space D(A) with the graph norm
‖ · ‖1 = ‖ · ‖ + ‖A · ‖. Denote Cα(J,E) = {x ∈ C(J,E) : Dαx exists and
Dαx ∈ C(J,E)}. Obviously, Cα(J,E) is a Banach space whose norm is

‖x‖ = sup
t∈J
{‖x(t)‖+ ‖Dαx(t)‖}.

An abstract function u ∈ PC(J,E) ∩ Cα(J,E) ∩ C(J,E1) is called a classical
solution of (1) if u(t) satisfies equalities (1).
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For completeness we recall the definition of the Caputo derivative of frac-
tional order.

Definition 2.1. The fractional integral of order γ of a function f : [0,∞)→ R
is defined as

Iγ0+f(t) =
1

Γ(γ)

∫ t

0

(t− s)γ−1f(s)ds, t > 0, α > 0,

provided the right side is point-wise defined on (0,∞), where Γ(·) is the gamma
function.

Definition 2.2. The Riemann-Liouville derivative of order γ with the lower
limit zero for a function f : [0,∞)→ R can be written as

Dγ
0+f(t) =

1

Γ(n− γ)

dn

dtn

∫ t

0

f(s)

(t− s)γ+1−n ds, t > 0, n− 1 < γ < n.

Definition 2.3. The Caputo fractional derivative of order γ for a function
f : [0,∞)→ R can be written as

cDγ
0+f(t) = Dγ

0+

[
f(t)−

n−1∑
k=0

tk

k!
f (k)(0)

]
, t > 0, n− 1 < γ < n,

where n = [γ] + 1 and [γ] denotes the integer part of γ.

Remark 2.4. In the case f(t) ∈ Cn[0,∞), then

cDγ
0+f(t) =

1

Γ(n− γ)

∫ t

0

(t− s)n−γ−1f (n)(s)ds

= In−γ0+ fn(t), t > 0, n− 1 < γ < n.

Remark 2.5. If u is an abstract function with values in E, then the integrals
which appear in Definitions 2.2 and 2.3 are taken in Bochner’s sense.

Now, we recall some properties of the measure of noncompactness will be
used later. Let α(·) denote the Kuratowski measure of noncompactness of the
bounded set. For any B ⊂ C(J,E) and t ∈ J , set B(t) = {u(t) : u ∈ B} ⊂ E.
If B is bounded in C(J,E), then B(t) is bounded in E, and α(B(t)) ≤ α(B),
for more detail see [2, 6].

Lemma 2.6 ([18]). Let E be a Banach space, and let D ⊂ E be bounded. Then
there exists a countable set D0 ⊂ D such that α(D) ≤ 2α(D0).

Lemma 2.7 ([14]). Let E be a Banach space, and let D ⊂ C(J,E) is equicon-
tinuous and bounded. Then α(D(t)) is continuous on J , and

α(D) = max
t∈J

α(D(t)).

Lemma 2.8 ([15]). Let B = {un} ⊂ PC(J,E) be a bounded and countable set.
Then α(B(t)) is Lebesgue integral on J , and

α
({∫

J

un(t)dt : n ∈ N
})
≤ 2

∫
J

α(B(t))dt.
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In order to prove the main results, we also need the following Lemma 2.9.

Lemma 2.9. Assume that α > 0, m ∈ C(J,R+) satisfies

(2)

m(t) ≤ M1

∫ t

0

(t− s)α−1m(s)ds+M2

∫ t

0

(t− s)α−1m(s)ds

+M3

∫ ω

0

(t− s)α−1m(s)ds, t ∈ J,

where Mi ≥ 0 (i = 1, 2, 3) are constants. Then m(t) ≡ 0 for t ∈ J provided the

following condition hold: (i) (M1+M2+M3)ωα

α < 1.

Proof. Let us suppose that (i) holds. Then, from (2)

m(t) ≤ (M1 +M2 +M3)

∫ ω

0

(t− s)α−1m(s)ds, t ∈ J.

If follows by integrating the above inequality that∫ ω

0

m(s)ds ≤ (M1 +M2 +M3)ωα

α

∫ ω

0

m(s)ds,

and by assumption (i), implies ∫ ω

0

m(s)ds = 0,

and so m(t) ≡ 0, t ∈ J . The proof of this Lemma is complete. �

Lemma 2.10 ([13]). Let P be a normal cone of the Banach space E and v0,
w0 ∈ E with v0 ≤ w0, Suppose that Q : [v0, w0] → E is a nondecreasing strict
set contraction operator such that v0 ≤ Qv0 and Qw0 ≤ w0. Then Q has a
minimal fixed point u and a maximal fixed point u in [v0, w0]; moreover, vn → u
and wn → u, where vn = Qvn−1 and wn = Qwn−1(n = 1, 2, . . .) which satisfy
v0 ≤ v1 ≤ · · · ≤ vn ≤ · · · ≤ u ≤ u ≤ · · · ≤ wn ≤ · · · ≤ w1 ≤ w0.

Let A : D(A) ⊂ E → E be a closed linear operator and −A generates a
C0-semigroup T (t)(t ≥ 0) in E. Then there exist constants D > 0 and δ ∈ R
such that

‖T (t)‖ ≤ Deδt, t ≥ 0.

Definition 2.11. A C0-semigroup T (t)(t ≥ 0) in E is called to be positive, if
order inequality T (t)x ≥ θ holds for each x ≥ θ, x ∈ E and t ≥ 0.

Remark 2.12. It is easy to see that for any C ≥ 0, −(A + CI) also generates
a C0-semigroup S(t) = e−CtT (t)(t ≥ 0) in E. And S(t)(t ≥ 0) is a positive
C0-semigroup if T (t)(t ≥ 0) is a positive C0-semigroup (about the positive
C0-semigroup, see [21]).

Now, we give a mild solution for the initial value problem of impulsive frac-
tional evolution equations, which can be found in [26].
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Lemma 2.13 ([26]). Let E be a Banach space, A : D(A) ⊂ E → E be a closed
linear operator and −A generate a C0-semigroup T (t)(t ≥ 0) in E. For any
f ∈ C(J ×E ×E ×E,E), u0 ∈ E and Ik ∈ C(E,E), k = 1, 2, . . . ,m, then the
initial value problem

(3)


cDα

0+u(t) +Au(t) = f(t, u(t), Fu(t), Gu(t)), t ∈ J ′,
∆u|t=tk = Ik(u(tk)), k = 1, 2, . . . ,m,
u(0) = u0,

has a unique mild solution u ∈ PC(J,E) ∩ Cα(J,E) ∩ C(J,E1) given by

(4) u(t) =



Tα(t)u0+
∫ t

0
(t−s)α−1Sα(t−s)f(s, u(s), Fu(s), Gu(s))ds, t ∈ [0, t1],

Tα(t)u0 + Tα(t− t1)I1(u(t1))

+
∫ t

0
(t− s)α−1Sα(t− s)f(s, u(s), Fu(s), Gu(s))ds, t ∈ (t1, t2],

...

Tα(t)u0 +
k∑
i=1

Tα(t− ti)Ii(u(ti))

+
∫ t

0
(t− s)α−1Sα(t− s)f(s, u(s), Fu(s), Gu(s))ds, t ∈ (tk, tk+1],

where

(5)

Tα(t) =

∫ ∞
0

θα(σ)T (tασ)dσ, Sα(t) = α

∫ ∞
0

σθα(σ)T (tασ)dσ,

θα(σ) =
1

πα

∞∑
n=1

(−σ)n−1 Γ(nα+ 1)

n!
sin(nπα), σ ∈ (0,∞)

are the functions of Wright type defined on (0,∞) which satisfies

θα(σ) ≥ 0, σ ∈ (0,∞),

∫ ∞
0

θα(σ)dσ = 1

and ∫ ∞
0

σvθα(σ)dσ =
Γ(1 + v)

Γ(1 + αv)
, v ∈ [0, 1].

Clearly, if the semigroup T (t)(t ≥ 0) is positive, then the operators Tα(t) and
Sα(t) are also positive for all t ≥ 0.

Definition 2.14. By a mild solution of the initial value problem (3) has a
unique mild solution u ∈ PC(J,E) ∩ Cα(J,E) ∩ C(J,E1) given by (4).

First, we give the following lemmas to be used in proving our main results,
which can be found in [26].

Lemma 2.15. The operators Tα(t) and Sα(t)(t ≥ 0) have the following
properties:

(i) For any fixed t ≥ 0,Tα(t) and Sα(t) are linear and bounded operators,
i.e., for any u ∈ E,

‖Tα(t)u‖ ≤M‖u‖, ‖Sα(t)u‖ ≤ M

Γ(α)
‖u‖,

where M = supt∈J ‖T (t)‖, which is a finite number.
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(ii) For every u ∈ E, t→ Tα(t)u and t→ Sα(t)u are continuous functions
from [0,∞) into E.

(iii) The operators Tα(t) and Sα(t) are strongly continuous for all t ≥ 0.
(iv) If T (t)(t ≥ 0) is an equicontinuous semigroup, Tα(t) and Sα(t) are

equicontinuous in E for t > 0.
(v) For every t > 0, Tα(t) and Sα(t) are compact operators if T (t) is

compact.

Suppose that here the bounded operator B : E → E exists given by

(6) B = [I −Tα(ω)]−1.

We present sufficient conditions for the existence and boundedness of the
operator B.

Lemma 2.16 (see [29, Theorem 3.3 and Remark 3.4]). The operator B defined
in (6) exists and is bounded, if one of the following three conditions holds:

(i) T (t) is compact for each t > 0 and the homogeneous linear nonlocal
problem {

cDα
0+u(t) = Au(t), t ∈ J,

u(0) = u(ω),

has no non-trivial mild solutions.
(ii) If ‖Tα(ω)‖ < 1, then the operator I − Tα(ω) is invertible and [I −

Tα(ω)]−1 ∈ Lb(E).
(iii) If ‖T (t)‖ < 1 for t ∈ (0, ω], then Tα(nω) → 0 as n → ∞ and the

operator I − Tα(ω) is invertible and [I − Tα(ω)]−1 ∈ Lb(E), where Lb(E)
denote the space of bounded linear operators from E to E.

Lemma 2.17. Let T (t)(t ≥ 0) be a compact C0-semigroup in E generated by
−A. Then the PBVP (1) has a unique mild solution u ∈ PC(J,E)∩Cα(J,E)∩
C(J,E1) given by

(7) u(t) =



Tα(t)B
[ ∫ ω

0
(ω − s)α−1Sα(ω − s)f(s, u(s), Fu(s), Gu(s))ds

]
+
∫ t

0
(t− s)α−1Sα(t− s)f(s, u(s), Fu(s), Gu(s))ds, t ∈ [0, t1],

Tα(t)B
[ ∫ ω

0
(ω − s)α−1Sα(ω − s)f(s, u(s), Fu(s), Gu(s))ds

+Tα(ω − t1)I1(u(t1))
]

+ Tα(t− t1)I1(u(t1))

+
∫ t

0
(t− s)α−1Sα(t− s)f(s, u(s), Fu(s), Gu(s))ds, t ∈ (t1, t2],

...

Tα(t)B
[ ∫ ω

0
(ω − s)α−1Sα(ω − s)f(s, u(s), Fu(s), Gu(s))ds

+
k∑
i=1

Tα(ω − ti)Ii(u(ti))
]

+
k∑
i=1

Tα(t− ti)Ii(u(ti))

+
∫ t

0
(t− s)α−1Sα(t− s)f(s, u(s), Fu(s), Gu(s))ds, t ∈ (tm, ω],

where Tα(t),Sα(t)(t > 0) are given by (5).

Proof. For any u ∈ PC(J,E), by Definition 2.14 and Lemma 2.13, we know
easily that the initial value problem of impulsive fractional evolution equation
(3) has a unique mild solution u ∈ PC(J,E) given by (4).
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We show that the PBVP (1) has a unique mild solution u ∈ PC(J,E) given
by (7). If a function u ∈ PC(J,E) defined by (4) is a solutions of the PBVP
(1) and u0 = u(ω), then

(8)

u0 =

∫ ω

0

(ω − s)α−1Sα(ω − s)f(s, u(s), Fu(s), Gu(s))ds

+

k∑
i=1

Tα(ω − ti)Ii(u(ti)), t ∈ Jk, k = 1, 2, . . . ,m.

By (v) of Lemma 2.15, Tα(ω) is a compact operator. By the Fredholm alterna-
tive theorem, [I−Tα(ω)]−1 exists and is bounded. Since the periodic boundary
value problem 

cDα
0+u(t) +Au(t) = 0, t ∈ J, t 6= tk,

∆u|t=tk = Ik(u(tk)), k = 1, 2, . . . ,m,
u(0) = u(ω),

has no non-trivial mild solution, the operator equation (8) has an unique solu-
tion

u0 = B
[ ∫ ω

0

(ω − s)α−1Sα(ω − s)f(s, u(s), Fu(s), Gu(s))ds

+

m∑
i=1

Tα(ω − ti)Ii(u(ti))
]
.

Then u0 is the unique initial value of the problem (3) in E, which satisfies
u(0) = u0 = u(ω). It follows that the mild solution u of the problem (3)
corresponding to initial value

u(0) = u0 = B
[ ∫ ω

0

(ω − s)α−1Sα(ω − s)f(s, u(s), Fu(s), Gu(s))ds

+

m∑
i=1

Tα(ω − ti)Ii(u(ti))
]

is just the mild solution of the PBVP (1). Therefore, the conclusion of Lemma
2.17 holds. �

Remark 2.18. By Lemma 2.16, we can replace the assumption of {T (t)}t≥0

being compact by ‖T (t)‖ < 1 for t ∈ (0, ω] or ‖Tα(ω)‖ ≤ 1 directly. It is
obvious that we have the following the result.

Corollary 2.19. Let T (t)(t ≥ 0) be a C0-semigroup in E generated by −A,
and ‖T (t)‖ < 1 for t ∈ (0, ω]. then the PBVP (1) has a unique mild solution
u ∈ PC(J,E) ∩ Cα(J,E) ∩ C(J,E1) given by (7).

Proof. For any u ∈ PC(J,E), by Definition 2.14 and Lemma 2.15, we know
easily that the initial value problem of impulsive fractional evolution equation
(3) has a unique mild solution u ∈ PC(J,E) given by (4).
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We show that the PBVP (1) has a unique mild solution u ∈ PC(J,E) given
by (7). If a function u ∈ PC(J,E) defined by (4) is a solutions of the PBVP
(1) and u0 = u(ω), then the operator equation (8) hold. If ‖T (t)‖ < 1 for
t ∈ (0, ω], i.e., ‖Tα(ω)‖ < 1, by (ii) of Lemma 2.16, then the operator I−Tα(ω)
is invertible and is bounded, the operator equation (8) has an unique solution

u0 = B
[ ∫ ω

0

(ω − s)α−1Sα(ω − s)f(s, u(s), Fu(s), Gu(s))ds

+

m∑
i=1

Tα(ω − ti)Ii(u(ti))
]
.

Then u0 is the unique initial value of the problem (3) in E, which satisfies
u(0) = u0 = u(ω). It follows that the mild solution u of the problem (3)
corresponding to initial value

u(0) = u0 = B
[ ∫ ω

0

(ω − s)α−1Sα(ω − s)f(s, u(s), Fu(s), Gu(s))ds

+

m∑
i=1

Tα(ω − ti)Ii(u(ti))
]

is just the mild solution of the PBVP (1). Therefore, the conclusion of Corollary
2.19 holds. �

3. Main results

In this section, we will present some main results. Before stating and proving
these results, we introduce notations which are used in this sequel.

For v, w ∈ PC(J,E) with v ≤ w, we use [v, w] to denote the order interval
{u ∈ PC(J,E) : v ≤ u ≤ w} in PC(J,E), and [v(t), w(t)] to denote the order
interval {u ∈ E : v(t) ≤ u(t) ≤ w(t), t ∈ J} in E.

Definition 3.1. If a function v0 ∈ PC(J,E) ∩ Cα(J,E) ∩ C(J,E1) satisfies

(9)


cDα

0+v0(t) +Av0(t) ≤ f(t, v0(t), Fv0(t), Gv0(t)), t ∈ J ′,
∆v0|t=tk ≤ Ik(v0(tk)), k = 1, 2, . . . ,m,
v0(0) ≤ v0(ω),

we call it a lower solution of the PBVP (1); if all the inequalities in (9) are
reversed, we call it an upper solution of PBVP (1).

In the following we give some existence theorems of mild solutions of the
PBVP (1).

Theorem 3.2. Let E be an ordered Banach space, whose positive cone P is
normal, A : D(A) ⊂ E → E be a closed linear operator, the positive C0-
semigroup T (t)(t ≥ 0) generated by −A is compact in E, f ∈ C(J×E×E×E,E)
and Ik ∈ C(E,E), k = 1, 2, . . . ,m. Assume that the PBVP (1) has a lower
solution v0 ∈ PC(J,E) ∩ Cα(J,E) ∩ C(J,E1) and an upper solution w0 ∈
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PC(J,E) ∩ Cα(J,E) ∩ C(J,E1) with v0 ≤ w0. Suppose also that the following
conditions are satisfied:

(H1) There exists a constant C > 0 such that

f(t, u2, v2, z2)− f(t, u1, v1, z1) ≥ −C(u2 − u1),

for any t ∈ J , and v0(t) ≤ u1 ≤ u2 ≤ w0(t), Fv0(t) ≤ v1 ≤ v2 ≤
Fw0(t), Gv0(t) ≤ z1 ≤ z2 ≤ Gw0(t).

(H2) The impulsive function Ik(·) satisfies

Ik(u1) ≤ Ik(u2), k = 1, 2, . . . ,m,

for any t ∈ J , and v0(t) ≤ u1 ≤ u2 ≤ w0(t).

Then the PBVP (1) has minimal and maximal mild solutions u and u between
v0 and w0.

Proof. Let C > δ, it is easy to see that −(A+ CI) generates an exponentially
stable, positive C0-semigroup S(t) = e−CtT (t)(t ≥ 0). Also, it is compact. Let
Φ(t) =

∫∞
0
θα(σ)S(tασ)dσ, Ψ(t) = α

∫∞
0
σθα(σ)S(tασ)dσ, by Remark 2.12 and

Lemma 2.15, the operators Φ(t) and Ψ(t) are also positive and compact for all
t ≥ 0. By Lemma 2.15, we have

‖Φ(t)‖ ≤M, ‖Ψ(t)‖ ≤ M

Γ(α)
, t ≥ 0.

Let J0 = [t0, t1] = [0, t1], Jk = (tk, tk+1], k = 1, 2, . . . ,m, we define the
mapping Q : [v0, w0]→ PC(J,E) by
(10)

Qu(t) =



Φ(t)B
[ ∫ ω

0
(ω − s)α−1Ψ(ω − s)[f(s, u(s), Fu(s), Gu(s)) + Cu(s)]ds

]
+
∫ t

0
(t− s)α−1Ψ(t− s)[f(s, u(s), Fu(s), Gu(s)) + Cu(s)]ds, t ∈ [0, t1],

Φ(t)B
[ ∫ ω

0
(ω − s)α−1Ψ(ω − s)[f(s, u(s), Fu(s), Gu(s)) + Cu(s)]ds

+Φ(ω − t1)I1(u(t1))
]

+ Φ(t− t1)I1(u(t1))

+
∫ t

0
(t− s)α−1Ψ(t− s)[f(s, u(s), Fu(s), Gu(s)) + Cu(s)]ds, t ∈ (t1, t2],

...

Φ(t)B
[ ∫ ω

0
(ω − s)α−1Ψ(ω − s)[f(s, u(s), Fu(s), Gu(s)) + Cu(s)]ds

+
k∑
i=1

Φ(ω − ti)Ii(u(ti))
]

+
k∑
i=1

Φ(t− ti)Ii(u(ti))

+
∫ t

0
(t− s)α−1Ψ(t− s)[f(s, u(s), Fu(s), Gu(s)) + Cu(s)]ds, t ∈ (tm, ω],

Clearly, Q : [v0, w0] → PC(J,E) is continuous. By Lemma 2.17, the mild
solution of the PBVP (1) is equivalent to the fixed point of the operator Q.
Since S(t)(t ≥ 0) is a positive C0-semigroup, combine this with the assumptions
(H1) and (H2), Q is increasing in [v0, w0].

Now, we first show v0 ≤ Qv0, Qw0 ≤ w0. Let h(t) =c Dα
0+v0(t) + Av0(t) +

Cv0(t), by (9), h ∈ PC(J,E) and h(t) ≤ f(t, v0(t), Fv0(t), Gv0(t)) + Cv0(t),
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t ∈ J . By Lemma 2.9, the positivity of operator Φ(t) and Ψ(t), for t ∈ J0, we
have

v0(t) = Φ(t)v0(0) +

∫ t

0

(t− s)α−1Ψ(t− s)h(s)ds

≤ Φ(t)v0(0)

+

∫ t

0

(t− s)α−1Ψ(t− s)(f(s, v0(s), Fv0(s), Gv0(s)) + Cv0(s))ds.

Especially, we have

v0(ω) ≤ Φ(ω)v0(0)

+

∫ ω

0

(ω − s)α−1Ψ(ω − s)(f(s, v0(s), Fv0(s), Gv0(s)) + Cv0(s))ds.

Combining this inequality with v0(0) = v0(ω), it follows that

v0(0) ≤ [I − Φ(ω)]−1
[ ∫ ω

0

(ω − s)α−1Ψ(ω − s)(f(s, v0(s), Fv0(s), Gv0(s))

+ Cv0(s))ds
]
.

For t ∈ J1, we have

v0(t) = Φ(t)v0(0) + Φ(t− t1)I1(u(t1)) +

∫ t

0

(t− s)α−1Ψ(t− s)h(s)ds

≤ Φ(t)v0(0) + Φ(t− t1)I1(u(t1))

+

∫ t

0

(t− s)α−1Ψ(t− s)(f(s, v0(s), Fv0(s), Gv0(s)) + Cv0(s))ds.

Especially, we have

v0(ω) ≤ Φ(ω)v0(0) + Φ(ω − t1)I1(u(t1))

+

∫ ω

0

(ω − s)α−1Ψ(ω − s)(f(s, v0(s), Fv0(s), Gv0(s)) + Cv0(s))ds.

Combining this inequality with v0(0) = v0(ω), it follows that

v0(0) ≤ [I − Φ(ω)]−1
[
Φ(ω − t1)I1(u(t1))

+

∫ ω

0

(ω − s)α−1Ψ(ω − s)(f(s, v0(s), Fv0(s), Gv0(s)) + Cv0(s))ds
]
.

Continuing such a process interval by interval to Jm. On the other hand, from
(10), we have

Q(v0)(t) = Φ(t)B
[ ∫ ω

0

(ω − s)α−1Ψ(ω − s)[f(s, v0(s), Fv0(s), Gv0(s))

+ Cv0(s)]ds+

k∑
i=1

Φ(ω − ti)Ii(v0(ti))
]
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+

k∑
i=1

Φ(t− ti)Ii(v0(ti))

+

∫ t

0

(t− s)α−1Ψ(t− s)(f(s, v0(s), Fv0(s), Gv0(s))

+ Cv0(s))ds, t ∈ J.
Therefore,

Q(v0)(t)− v0(t)

≥ Φ(t)
{
B
[ ∫ ω

0

(ω − s)α−1Ψ(ω − s)[f(s, v0(s), Fv0(s), Gv0(s)) + Cv0(s)]ds

+

k∑
i=1

Φ(ω − ti)Ii(v0(ti))
]
− v0(0)

}
≥ 0

for all t ∈ J . It implies that v0 ≤ Qv0. Similarly, it can be show that Qw0 ≤ w0.
So Q : [v0, w0]→ [v0, w0] is a continuously increasing operator.

Next, we show that Q : [v0, w0]→ [v0, w0] is completely continuous. Let

(11)

(Wu)(t) =

∫ t

0

(t− s)α−1Ψ(t− s)(f(s, u(s), Fu(s), Gu(s)) + Cu(s))ds,

(V u)(t) =

k∑
i=1

Φ(t− ti)Ii(u(ti)), u ∈ [v0, w0].

On the one hand, we prove that for any 0 < t ≤ ω, Y (t) = {(Wu)(t) : u ∈
[v0, w0]} is precompact in E. For 0 < ε < t and u ∈ [v0, w0],
(12)

(Wεu)(t) =

∫ t−ε

0

(t− s)α−1Ψ(t− s)(f(s, u(s), Fu(s), Gu(s)) + Cu(s))ds

=

∫ t−ε

0

(t− s)α−1S(εαδ)
[
α

∫ t−ε

0

∫ ∞
δ

ηθα(η)S((t− s)αη − εαδ)dη

× [f(s, u(s), Fu(s), Gu(s)) + Cu(s)]ds
]
.

For any u ∈ [v0, w0], by assumption (H1), we have

f(t, v0(t), Fv0(t), Gv0(t)) + Cv0(t) ≤ f(t, u(t), Fu(t), Gu(s)) + Cu(t)

≤ f(t, w0(t), Fw0(t), Gw0(t)) + Cw0(t).

By the normality of the cone P , there exists M1 > 0 such that

‖f(t, u(t), Fu(t), Gu(t)) + Cu(t)‖ ≤M1, u ∈ [v0, w0].

By the compactness of S(ε), Yε(t) = {(Wεu)(t) : u ∈ [v0, w0]} is precompact in
E. Since

‖(Wu)(t)− (Wεu)(t)‖ ≤
∫ t

t−ε
(t− s)α−1‖Ψ(t− s)‖
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· ‖f(s, u(s), Fu(s), Gu(s)) + Cu(s)‖ds

≤ MM1

Γ(α+ 1)
εα,

the set Y (t) is totally bounded in E. Furthermore, Y (t) is precompact in E.
On the other hand, for any 0 ≤ t1 ≤ t2 ≤ ω, we have

(13)

‖(Wu)(t2)− (Wu)(t1)‖

=
∥∥∥∫ t1

0

(t1 − s)α−1
(

Ψ(t2 − s)−Ψ(t1 − s)
)

[f(s, u(s), Fu(s), Gu(s)) + Cu(s)]ds

+

∫ t2

t1

(t2 − s)α−1Ψ(t2 − s)(f(s, u(s), Fu(s), Gu(s)) + Cu(s))ds

+

∫ t1

0

(
(t2 − s)α−1 − (t1 − s)α−1

)
Ψ(t2 − s)

(f(s, u(s), Fu(s), Gu(s)) + Cu(s))ds
∥∥∥

≤ M1

∫ t1

0

|t1 − s|α−1‖Ψ(t2 − s)−Ψ(t1 − s)‖ds+
MM1

Γ(α+ 1)
(t2 − t1)α

+
MM1

Γ(α)

∫ t1

0

(
(t2 − s)α−1 − (t1 − s)α−1

)
ds

≤ M1

∫ ω

0

‖Ψ(t2 − t1 + s)−Ψ(s)‖ds+
MM1

Γ(α+ 1)
(t2 − t1)α

+
MM1

Γ(α)

∫ t1

0

(
(t2 − s)α−1 − (t1 − s)α−1

)
ds.

The right side of (13) depends on t2 − t1, but is independent of u. As S(·) is
compact, Ψ(·) is also compact and therefore Ψ(t) is continuous in the uniform
operator topology for t > 0. So, the right side of (13) tends to zero as t2− t1 →
0. Hence W ([v0, w0]) is equicontinuous function of cluster in Y .

The same idea can be used to prove the compactness of V . For 0 ≤ t ≤ ω,

since {Qu(t) : u ∈ [v0, w0]} =
{

Φ(t)B
[ ∫ ω

0
(ω−s)α−1Ψ(ω−s)[f(s, v0(s), Fv0(s),

Gv0(s))+Cv0(s)]ds+
k∑
i=1

Φ(ω−ti)Ii(v0(ti))
]
+(Wu)(t)+(V u)(t) : u ∈ [v0, w0]

}
,

and Qu(0) = B
[ ∫ ω

0
(ω−s)α−1Ψ(ω−s)[f(s, v0(s), Fv0(s), Gv0(s))+Cv0(s)]ds+

k∑
i=1

Φ(ω − ti)Ii(v0(ti))
]

= u(ω) is precompact in E. Hence, Q([v0, w0]) is pre-

compact in PC(J,E) by the Arzela-Ascoli theorem. So Q : [v0, w0]→ [v0, w0] is
completely continuous. Hence, Q has minimal and maximal fixed points u and
u in [v0, w0], and therefore, they are the minimal and maximal mild solutions
of the PBVP (1) in [v0, w0], respectively. �
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Remark 3.3. By Lemma 2.16 and Corollary 2.19, we can replace the assumption
of {T (t)}t≥0 being compact by ‖T (t)‖ < 1 for t ∈ (0, ω] or ‖Φ(ω)‖ < 1 directly.
It is obvious that we have the following the result.

Theorem 3.4. Let E be an ordered Banach space, whose positive cone P is
normal, A : D(A) ⊂ E → E be a closed linear operator and −A generates a
positive C0-semigroup T (t)(t ≥ 0) in E and ‖T (t)‖ < 1 for t ∈ (0, ω], f ∈
C(J ×E ×E ×E,E) and Ik ∈ C(E,E), k = 1, 2, . . . ,m. If the PBVP (1) has
a lower solution v0 ∈ PC(J,E) ∩ Cα(J,E) ∩ C(J,E1) and an upper solution
w0 ∈ PC(J,E) ∩ Cα(J,E) ∩ C(J,E1) with v0 ≤ w0, conditions (H1) and (H2)
hold, and satisfy

(H3) There exist a constant L ≥ 0 such that for all t ∈ J ,

α({f(t, un, vn, zn)}) ≤ L(α({un}) + α({vn}) + α({zn})),

and increasing or decreasing sequences {un} ⊂ [v0(t), w0(t)], {vn} ⊂
[Fv0(t), Fw0(t)] and {zn} ⊂ [Gv0(t), Gw0(t)].

(H4) The following inequality

2[(L+ C) + 2ωL(K0 +H0)]

Γ(α+ 1)
ωα < 1,

hold, where K0 = max(t,s)∈DK(t, s), H0 = max(t,s)∈D0
H(t, s).

(H5) The sequences vn(0) and wn(0) are convergent, where vn = Q(vn−1,
wn−1), wn = Q(wn−1, vn−1), n = 1, 2, . . ..

Then the PBVP (1) has minimal and maximal mild solutions between v0 and
w0, which can be obtained by a monotone iterative procedure starting from v0

and w0 respectively.

Proof. Let C > δ, it is easy to see that −(A+ CI) generates an exponentially
stable, positive C0-semigroup S(t) = e−CtT (t)(t ≥ 0). Also, it is compact. Let
Φ(t) =

∫∞
0
θα(σ)S(tασ)dσ, Ψ(t) = α

∫∞
0
σθα(σ)S(tασ)dσ, by Remark 2.18 and

Lemma 2.16, the operators Φ(t) and Ψ(t) are also positive and compact for all
t ≥ 0. By Lemma 2.16 and ‖T (t)‖ < 1, we have that

‖Φ(t)‖ < 1, ‖Ψ(t)‖ < 1

Γ(α)
, t ≥ 0.

Let J0 = [t0, t1] = [0, t1], Jk = (tk, tk+1], k = 1, 2, . . . ,m, we define the
mapping Q : [v0, w0] → PC(J,E) by (10). Clearly, Q : [v0, w0] → PC(J,E) is
continuous. By Corollary 2.19, the mild solution of the PBVP (1) is equivalent
to the fixed point of the operator Q.

From Theorem 3.2, we know that Q : [v0, w0] → [v0, w0] is a continuously
increasing operator. Now, we define two sequences {vn} and {wn} in [v0, w0]
by the iterative scheme

(14) vn = Qvn−1, wn = Qwn−1, n = 1, 2, . . . .
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Then from the monotonicity of Q, it follows that

(15) v0 ≤ v1 ≤ v2 ≤ · · · ≤ vn ≤ · · · ≤ wn ≤ · · · ≤ w2 ≤ w1 ≤ w0.

We prove that {vn} and {wn} are convergent in J .
For convenience, we denote B = {vn : n ∈ N} and B0 = {vn−1 : n ∈ N}.

Then B = Q(B0). From B0 = B
⋃
{v0} it follows that α(B0(t)) = α(B(t)) for

t ∈ J . Let ϕ(t) := α(B(t)), t ∈ J , going from J0 to Jm interval by interval we
show that ϕ(t) ≡ 0 in J .

For t ∈ J , there exists a Jk−1 such that t ∈ Jk−1. By Lemma 2.8, we have

α(F (B0)(t)) = α
({∫ t

0

K(t, s)vn−1(s)ds : n ∈ N
})

≤
k−1∑
j=1

α
({∫ tj

tj−1

K(t, s)vn−1(s)ds : n ∈ N
})

+ α
({∫ t

tk−1

K(t, s)vn−1(s)ds : n ∈ N
})

≤ 2K0

k−1∑
j=1

∫ tj

tj−1

α(B0(s))ds+ 2K0

∫ t

tk−1

α(B0(s))ds

= 2K0

k−1∑
j=1

∫ tj

tj−1

ϕ(s)ds+ 2K0

∫ t

tk−1

ϕ(s)ds

= 2K0

∫ t

0

ϕ(s)ds,

and therefore,

(16)

∫ t

0

α(F (B0)(s))ds ≤ 2ωK0

∫ t

0

ϕ(s)ds,

and

α(G(B0)(t)) = α
({∫ ω

0

H(t, s)vn−1(s)ds : n ∈ N
})

≤
k−1∑
j=1

α
({∫ tj

tj−1

H(t, s)vn−1(s)ds : n ∈ N
})

+ α
({∫ ω

tk−1

H(t, s)vn−1(s)ds : n ∈ N
})

≤ 2H0

k−1∑
j=1

∫ tj

tj−1

α(B0(s))ds+ 2H0

∫ ω

tk−1

α(B0(s))ds

= 2H0

k−1∑
j=1

∫ tj

tj−1

ϕ(s)ds+ 2H0

∫ ω

tk−1

ϕ(s)ds
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= 2H0

∫ ω

0

ϕ(s)ds,

and therefore,

(17)

∫ ω

0

α(G(B0)(s))ds ≤ 2ωH0

∫ ω

0

ϕ(s)ds.

For t ∈ J0, by (9), Lemma 2.8 and the positivity of operator Φ(t),Ψ(t), and
assumption (H3), we have

ϕ(t) = α(B(t)) = α(Q(B0)(t))

= α
({

Φ(t)B
[ ∫ ω

0

(ω − s)α−1Ψ(ω − s)

[f(s, vn−1(s), Fvn−1(s), Gvn−1(s)) + Cvn−1(s)]ds
]

+

∫ t

0

(t− s)α−1Ψ(t− s)

(f(s, vn−1(s), Fvn−1(s), Gvn−1(s)) + Cvn−1(s))ds
})

≤ α
({

Φ(t)vn(0)
})

+
2

Γ(α)

∫ t

0

α({(t− s)α−1

(f(s, vn−1(s), Fvn−1(s), Gvn−1(s)) + Cvn−1(s))})ds

≤ 2

Γ(α)

∫ t

0

(t− s)α−1(
L(α(B0(s)) + α(F (B0)(s)) + α(G(B0)(s))) + Cα(B0(s))

)
ds

≤ 2

Γ(α)
(L+ C)

∫ t

0

(t− s)α−1ϕ(s)ds+
4

Γ(α)
ωLK0

∫ t

0

(t− s)α−1ϕ(s)ds

+
4

Γ(α)
ωLH0

∫ ω

0

(t− s)α−1ϕ(s)ds.

Hence by (H4) and Lemma 2.9, ϕ(t) ≡ 0 in J0. In particular, α(B(t1)) =
α(B0(t1)) = ϕ(t1) = 0, this implies that B(t1) and B0(t1) are precompact in
E. Thus I1(B0(t1)) is precompact in E, and α(I1(B0(t1))) = 0.

Now, for t ∈ J1, by the above argument for t ∈ J0, we have

ϕ(t) = α(B(t)) = α(Q(B0)(t))

= α
({

Φ(t)B
[ ∫ ω

0

(ω − s)α−1Ψ(ω − s)

[f(s, vn−1(s), Fvn−1(s), Gvn−1(s)) + Cvn−1(s)]ds

+ Φ(ω − t1)I1(vn−1(t1))
]

+

∫ t

0

(t− s)α−1Ψ(t− s)

(f(s, vn−1(s), Fvn−1(s), Gvn−1(s)) + Cvn−1(s))ds
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+ Φ(t− t1)I1(vn−1(t1))
})

≤ α
({

Φ(t)vn(0)
})

+
2

Γ(α)
(L+ C)

∫ t

0

(t− s)α−1ϕ(s)ds

+
4

Γ(α)
ωLK0

∫ t

0

(t− s)α−1ϕ(s)ds

+
4

Γ(α)
ωLH0

∫ ω

0

(t− s)α−1ϕ(s)ds.

Again by (H4) and Lemma 2.9, ϕ(t) ≡ 0 in J1, from which we obtain that
α(B0(t2)) = 0 and α(I2(B0(t2))) = 0.

Continuing such a process interval by interval up to Jm, we can prove that
ϕ(t) ≡ 0 in every Jk, k = 0, 1, 2, . . . ,m. Hence, for any t ∈ J, {vn(t)} is
precompact, and {vn(t)} has a convergent subsequence. Combing this with
the monotonicity (15), we easily prove that {vn(t)} itself is convergent, i.e.,
limn→∞ vn(t) = u(t), t ∈ J . Similarly, limn→∞ wn(t) = u(t), t ∈ J .

Evidently {vn(t)} ∈ PC(J,E), so u(t) is bounded integrable in every Jk,
k = 0, 1, 2, . . . ,m. Since for any t ∈ Jk, we have

vn(t) =



Φ(t)B
[ ∫ ω

0
(ω − s)α−1Ψ(ω − s)[f(s, vn−1(s), Fvn−1(s), Gvn−1(s))

+Cvn−1(s)]ds
]

+
∫ t

0
(t− s)α−1Ψ(t− s)(f(s, vn−1(s), Fvn−1(s), Gvn−1(s))

+Cvn−1(s))ds, t ∈ [0, t1],

Φ(t)B
[ ∫ ω

0
(ω − s)α−1Ψ(ω − s)[f(s, vn−1(s), Fvn−1(s), Gvn−1(s))

+Cvn−1(s)]ds

+Φ(ω − t1)I1(vn−1(t1))
]

+ Φ(t− t1)I1(vn−1(t1))

+
∫ t

0
(t− s)α−1Ψ(t− s)(f(s, vn−1(s), Fvn−1(s), Gvn−1(s))

+Cvn−1(s))ds, t ∈ (t1, t2],
...

Φ(t)B
[ ∫ ω

0
(ω − s)α−1Ψ(ω − s)[f(s, vn−1(s), Fvn−1(s), Gvn−1(s))

+Cvn−1(s)]ds

+
k∑
i=1

Φ(ω − ti)Ii(u(ti))
]

+
k∑
i=1

Φ(t− ti)Ii(vn−1(ti))

+
∫ t

0
(t− s)α−1Ψ(t− s)(f(s, vn−1(s), Fvn−1(s), Gvn−1(s))

+Cvn−1(s))ds, t ∈ (tm, ω],

letting n→∞, by the Lebesgue dominated convergence theorem, for all t ∈ Jk,
k = 0, 1, 2, . . . ,m, we get

u(t) = Φ(t)B
[ ∫ ω

0

(ω − s)α−1Ψ(ω − s)[f(s, u(s), Fu(s), Gu(s)) + Cu(s)]ds
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+

k∑
i=1

Φ(ω − ti)Ii(u(ti))
]

+

∫ t

0

(t− s)α−1Ψ(t− s)(f(s, u(s), Fu(s), Gu(s)) + Cu(s))ds

+

m∑
i=1

Φ(t− ti)Ii(u(ti)),

and u(t) ∈ PC(Jk, E), k = 0, 1, 2, . . . ,m. So, for t ∈ J , we have

u(t)=



Φ(t)B
[ ∫ ω

0
(ω − s)α−1Ψ(ω − s)[f(s, u(s), Fu(s), Gu(s)) + Cu(s)]ds

]
+
∫ t

0
(t− s)α−1Ψ(t− s)(f(s, u(s), Fu(s), Gu(s)) + Cu(s))ds, t ∈ [0, t1],

Φ(t)B
[ ∫ ω

0
(ω − s)α−1Ψ(ω − s)[f(s, u(s), Fu(s), Gu(s)) + Cu(s)]ds

+Φ(ω − t1)I1(u(t1))
]

+ Φ(t− t1)I1(u(t1))

+
∫ t

0
(t− s)α−1Ψ(t− s)(f(s, u(s), Fu(s), Gu(s)) + Cu(s))ds, t ∈ (t1, t2],

...

Φ(t)B
[ ∫ ω

0
(ω − s)α−1Ψ(ω − s)[f(s, u(s), Fu(s), Gu(s)) + Cu(s)]ds

+
k∑
i=1

Φ(ω − ti)Ii(u(ti))
]

+
k∑
i=1

Φ(t− ti)Ii(u(ti))

+
∫ t

0
(t− s)α−1Ψ(t− s)(f(s, u(s), Fu(s), Gu(s)) + Cu(s))ds, t ∈ (tm, ω].

Therefore, u(t) ∈ PC(J,E), and u = Qu. Similarly, u(t) ∈ PC(J,E), and
u = Qu. Combing this with monotonicity (15), we see that v0 ≤ u ≤ u ≤ w0.
By the monotonicity of Q, it is easy to see that u and u are the minimal and
maximal fixed points of Q in [v0, w0]. Therefore, u and u are the minimal and
maximal mild solutions of the PBVP (1) in [v0, w0], respectively. �

Corollary 3.5. Let E be an ordered Banach space, whose positive cone P is
regular, A : D(A) ⊂ E → E be a closed linear operator and −A generates a
positive C0-semigroup T (t)(t ≥ 0) in E and ‖T (t)‖ < 1 for t ∈ (0, ω], f ∈
C(J ×E ×E ×E,E) and Ik ∈ C(E,E), k = 1, 2, . . . ,m. If the PBVP (1) has
a lower solution v0 ∈ PC(J,E) ∩ Cα(J,E) ∩ C(J,E1) and an upper solution
w0 ∈ PC(J,E)∩Cα(J,E)∩C(J,E1) with v0 ≤ w0, and conditions (H1), (H2),
(H4) and (H5) are satisfied, then the PBVP (1) has minimal and maximal mild
solutions between v0 and w0, which can be obtained by a monotone iterative
procedure starting from v0 and w0 respectively.

Proof. Since P is regular, any ordered monotonic and ordered bounded se-
quence in E is convergent. For t ∈ J , let {xn} be an increasing or decreasing
sequence in [v0(t), w0(t)]. By (H1), {f(t, xn, yn, zn)+Cxn} is an ordered mono-
tonic and ordered bounded sequence in E. Then, α({f(t, xn, yn, zn)+Cxn}) =
α({xn}) = 0. By the properties of measure of noncompactness, we have

α({f(t, xn, yn, zn)}) ≤ α({f(t, xn, yn, zn) + Cxn}) + Cα({xn}) = 0.
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So, (H3) holds. Then, by Theorem 3.2, the proof is complete. �

Theorem 3.6. Let E be an ordered Banach space, whose positive cone P is
normal, A : D(A) ⊂ E → E be a closed linear operator and −A generates a
positive and equicontinuous C0-semigroup T (t)(t ≥ 0) in E and ‖T (t)‖ < 1 for
t ∈ (0, ω], f ∈ C(J × E × E × E,E) and Ik ∈ C(E,E), k = 1, 2, . . . ,m. If the
PBVP (1) has a lower solution v0 ∈ PC(J,E) ∩ Cα(J,E) ∩ C(J,E1) and an
upper solution w0 ∈ PC(J,E) ∩ Cα(J,E) ∩ C(J,E1) with v0 ≤ w0, conditions
(H1), (H2) hold, and satisfy

(H6) There exist a constant 0 < L1 <
Γ(α+1)[1−4

∑m
k=1Mk]

4(1+2ωK0+2ωH0)ωα such that

α({f(t, un, vn, zn) + Cun}) ≤ L1(α({un}) + α({vn}) + α({zn})),

for all t ∈ J , and equicontinuous countable subsets {xn}, {yn}, {zn} ⊂
[v0(t), w0(t)].

(H7) There exists Mk > 0, k = 1, 2, . . . ,m with
∑m
k=1Mk <

1
4 such that

α({Ik(xn(tk))}) ≤Mkα(xn(tk))

for any equicontinuous countable subsets {xn} ⊂ [v0, w0].

Then the PBVP (1) has a minimal mild solutions u and a maximal mild solution
u in [v0, w0]; moreover

vn(t)→ u(t), wn(t)→ u, (n→∞) uniformly for t ∈ J,

where vn(t) = Qvn−1(t), wn(t) = Qwn−1(t) which satisfy

v0(t) ≤ v1(t) ≤ · · · ≤ vn(t) ≤ · · ·
≤ u(t) ≤ u(t) ≤ · · ·
≤ wn(t) ≤ · · · ≤ w1(t) ≤ w0(t), t ∈ J.

Proof. Let C > δ, it is easy to see that −(A+ CI) generates an exponentially
stable, positive C0-semigroup S(t) = e−CtT (t)(t ≥ 0). Also, it is compact. Let
Φ(t) =

∫∞
0
θα(σ)S(tασ)dσ, Ψ(t) = α

∫∞
0
σθα(σ)S(tασ)dσ, by Remark 2.18 and

Lemma 2.16, the operators Φ(t) and Ψ(t) are also positive and compact for all
t ≥ 0. By Lemma 2.8 and ‖T (t)‖ < 1, we have that

‖Φ(t)‖ < 1, ‖Ψ(t)‖ < 1

Γ(α)
, t ≥ 0.

Let J0 = [t0, t1] = [0, t1], Jk = (tk, tk+1], k = 1, 2, . . . ,m, we define the
mapping Q : [v0, w0] → PC(J,E) by (10). Clearly, Q : [v0, w0] → PC(J,E) is
continuous. By Corollary 2.19, the mild solution of the PBVP(1) is equivalent
to the fixed point of the operator Q.

From the proof of Theorem 3.1, clearly, Q : [v0, w0] → [v0, w0] is continu-
ous. Since T (t)(t ≥ 0) is a equicontinuous C0-semigroup, S(t)(t ≥ 0) is also
a equicontinuous C0-semigroup, we also know that Q : [v0, w0] → [v0, w0] is a
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equicontinuous operator. For any D ⊂ [v0, w0], Q(D) is bounded and equicon-
tinuous. So, by Lemma 2.6, there exists a countable set D0 = {xn} such that

α(Q(D)) ≤ 2α(Q(D0)).

For t ∈ J0 = [0, t1], by assumptions (H6), (H7) and Lemma 2.6, we have

α(Q(D0(t))) = α
({

Φ(t)B
[ ∫ ω

0

(ω − s)α−1Ψ(ω − s)[f(s, xn(s), Fxn(s), Gn(s))

+ Cxn(s)]ds
]

+

∫ t

0

(t− s)α−1Ψ(t− s)

(f(s, xn(s), Fxn(s), Gxn(s)) + Cxn(s))ds
})

≤ α
({

Φ(t)B
[ ∫ ω

0

(ω − s)α−1Ψ(ω − s)

[f(s, xn(s), Fxn(s), Gxn(s)) + Cxn(s)]ds
])

+
2

Γ(α)

∫ t

0

(t− s)α−1α
({

(f(s, xn(s), Fxn(s), Gxn(s))

+ Cxn(s))
})
ds

≤ 2M∗

Γ(α)

∫ ω

0

(ω − s)α−1
(
L1

[
α(D0(s)) + α(F (D0)(s))

+ α(G(D0)(s))
])
ds

+
2

Γ(α)

∫ t

0

(t− s)α−1
(
L1

[
α(D0(s)) + α(F (D0)(s))

+ α(G(D0)(s))
])
ds

≤ 2M∗L1

Γ(α)

∫ ω

0

(ω − s)α−1α
(
D0(s)

)
ds

+
4M∗

Γ(α)
ωL1K0

∫ ω

0

(ω − s)α−1α
(
D0(s)

)
ds

+
4M∗

Γ(α)
ωL1H0

∫ ω

0

(ω − s)α−1α
(
D0(s)

)
ds

+
2L1

Γ(α)

∫ t

0

(t− s)α−1α
(
D0(s)

)
ds

+
4

Γ(α)
ωL1K0

∫ t

0

(t− s)α−1α
(
D0(s)

)
ds

+
4

Γ(α)
ωL1H0

∫ ω

0

(t− s)α−1α
(
D0(s)

)
ds
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≤ (M∗ + 1)
2L1(1 + 2ωK0 + 2ωH0)ωα

Γ(α+ 1)
α(D),

where M∗ = ‖B‖. For t ∈ Jk = (tk, tk+1], k = 1, 2, . . . ,m, by assumptions
(H6), (H7), (3.16), (3.17) and Lemma 2.6, we have

α(Q(D0(t))) = α
({

Φ(t)B
[ ∫ ω

0

(ω−s)α−1Ψ(ω−s)[f(s, xn(s), Fxn(s), Gxn(s))

+ Cxn(s)]ds+

k∑
i=1

Φ(ω − ti)Ii(xn(ti))
]

+

∫ t

0

(t− s)α−1Ψ(t− s)(f(s, xn(s), Fxn(s), Gxn(s))

+ Cxn(s))ds+

m∑
i=1

Φ(t− ti)Ii(xn(ti))
})

≤ 2M∗

Γ(α)

∫ ω

0

(ω − s)α−1α
({
f(s, xn(s), Fxn(s), Gxn(s))

+ Cxn(s)
})
ds+ 2M∗

m∑
i=1

Miα(Ii(xn(ti)))

+
2

Γ(α)

∫ t

0

(t− s)α−1α
({
f(s, xn(s), Fxn(s), Gxn(s))

+ Cxn(s)
})
ds+ 2

m∑
i=1

Miα(Ii(xn(ti)))

≤ 2M∗L1

Γ(α)

∫ ω

0

(ω − s)α−1α
(
D0(s)

)
ds

+
4M∗

Γ(α)
ωL1K0

∫ ω

0

(ω − s)α−1α
(
D0(s)

)
ds

+
4M∗

Γ(α)
ωL1H0

∫ ω

0

(ω − s)α−1α
(
D0(s)

)
ds

+ 2M∗
m∑
k=1

Mkα(D0(tk))

+
2L1

Γ(α)

∫ t

0

(t− s)α−1α
(
D0(s)

)
ds

+
4

Γ(α)
ωL1K0

∫ t

0

(t− s)α−1α
(
D0(s)

)
ds

+
4

Γ(α)
ωL1H0

∫ ω

0

(t− s)α−1α
(
D0(s)

)
ds
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+ 2

m∑
k=1

Mkα(D0(tk))

≤ (M∗ + 1)
(2L1(1 + 2ωK0 + 2ωH0)ωα

Γ(α+ 1)
+ 2

m∑
k=1

Mk

)
α(D),

where M∗ = ‖B‖. Hence for any t ∈ J , we have

α(Q(D0(t))) ≤ (M∗ + 1)
(2L1(1 + 2ωK0 + 2ωH0)ωα

Γ(α+ 1)
+ 2

m∑
k=1

Mk

)
α(D).

Since Q(D0) is bounded and equicontinuous, by Lemma 2.8, we have

α(Q(D)) ≤ 2α(Q(D0)) = 2 max
t∈J

α(Q(D0(t)))

≤ (M∗ + 1)
(4L1(1 + 2ωK0 + 2ωH0)ωα

Γ(α+ 1)
+ 4

m∑
k=1

Mk

)
α(D)

≤ γα(D),

where γ = (M∗ + 1)
(

4L1(1+2ωK0+2ωH0)ωα

Γ(α+1) + 4
∑m
k=1Mk

)
.

By (H6) and (H7), we known that γ < 1. Therefore, the Q : [v0, w0],→
[v0, w0] is a strict set contraction operator. Hence, our conclusion follows from
Lemma 2.10. �

Remark 3.7. Analytic semigroup and differentiable semigroup are equicontin-
uous semigroup [21]. In applications of partial differential equations, such as
parabolic and strongly damped wave equations, the corresponding solution
semigroup is an analytic semigroup. So Theorem 3.3 has extensive applicabil-
ity.

Now we discuss the uniqueness of the mild solution to the PBVP (1) in
[v0, w0]. If we further assume that the following conditions hold:

(H1)* There exists a positive constant C with C < Γ(α+1)
2ωαN(M∗+1) such that

f(t, u2, v2, z2)− f(t, u1, v1, z1) ≥ −C(u2 − u1),

for any t ∈ J , and v0(t) ≤ u1 ≤ u2 ≤ w0(t), Fv0(t) ≤ v1 ≤ v2 ≤
Fw0(t), Gv0(t) ≤ z1 ≤ z2 ≤ Gw0(t).

(H8) There exist positive constants C, L,N with C + ωLK0 + ωNH0 <
Γ(α+1)

2ωαN(M∗+1) such that

f(t, u2, v2, z2)− f(t, u1, v1, z1) ≤ C(u2 − u1) + L(v2 − v1) +N(z2 − z1),

for any t ∈ J , and v0(t) ≤ u1 ≤ u2 ≤ w0(t), Fv0(t) ≤ v1 ≤ v2 ≤
Fw0(t), Gv0(t) ≤ z1 ≤ z2 ≤ Gw0(t).
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(H9) There exist positive constants τk(k = 1, 2, . . . ,m) with
m∑
k=1

τk <
Γ(α+ 1)−N(M∗ + 1)(C + C + ωLK0 + ωNH0)ωα

Γ(α+ 1)N(M∗ + 1)

such that

Ik(u2)− Ik(u1) ≤ τk(u2 − u1), k = 1, 2, . . . ,m

for any t ∈ J, v0(t) ≤ u1 ≤ u2 ≤ w0(t).

Then we have the following existence and uniqueness results in general ordered
Banach space.

Theorem 3.8. Let E be an ordered Banach space, whose positive cone P is
normal, A : D(A) ⊂ E → E be a closed linear operator and −A generates a
positive C0-semigroup T (t)(t ≥ 0) in E and ‖T (t)‖ < 1 for t ∈ (0, ω], f ∈
C(J ×E ×E ×E,E) and Ik ∈ C(E,E), k = 1, 2, . . . ,m. If the PBVP (1) has
a lower solution v0 ∈ PC(J,E) ∩ Cα(J,E) ∩ C(J,E1) and an upper solution
w0 ∈ PC(J,E)∩Cα(J,E)∩C(J,E1) with v0 ≤ w0, such that conditions (H1)*,
(H2), (H8), (H9) hold, then the PBVP (1) has a unique mild solution u∗ in
[v0, w0].

Proof. From the proof of Theorem 3.2, when the conditions (H1)* and (H2) are
satisfied, the iterative sequences {vn} and {wn} defined by (14) satisfy (15).
Next, we show that there exists a unique u∗ ∈ PC(J,E) such that u∗ = Qu∗.
Since ‖T (t)‖ < 1, so ‖Φ(t)‖ < 1, ‖Ψ(t)‖ < 1

Γ(α) , t ∈ J . For any t ∈ J , from

(H8), (H9), (10), (14) and (15), we have

θ ≤ wn(t)− vn(t) = Qwn−1(t)−Qvn−1(t)

= Φ(t)B
[ ∫ ω

0

(ω − s)α−1Ψ(ω − s)[f(s, wn(s), Fwn(s), Gwn(s)) + Cwn(s)

− f(s, vn(s), Fvn(s), Gvn(s))− Cvn(s)]ds

+
∑

0<tk<t

Φ(ω − tk)[Ik(wn(tk))− Ik(vn(tk))
]

+
∑

0<tk<t

Φ(t− tk)[Ik(wn(tk))− Ik(vn(tk))]

+

∫ t

0

(t− s)α−1Ψ(t− s)[f(s, wn(s), Fwn(s), Gwn(s)) + Cwn(s)

− f(s, vn(s), Fvn(s), Gvn(s))− Cvn(s)]ds

≤ Φ(t)B
[
(C + C + ωLK0 + ωNH0)∫ ω

0

(ω − s)α−1Ψ(ω − s)(wn−1(s)− vn−1(s))ds

+
∑

0<tk<t

Φ(ω − tk)τk(wn−1(tk)− vn−1(tk))
]
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+ (C + C + ωLK0 + ωNH0)∫ t

0

(ω − s)α−1Ψ(ω − s)(wn−1(s)− vn−1(s))ds

+
∑

0<tk<t

Φ(t− tk)τk(wn−1(tk)− vn−1(tk)).

By the normality of cone P it follows that

‖wn(t)− vn(t)‖

≤ NM∗
[
(C + C + ωLK0 + ωNH0)

ωα

Γ(α+ 1)
+

m∑
k=1

τk

]
‖wn−1 − vn−1‖

+N
[
(C + C + ωLK0 + ωNH0)

ωα

Γ(α+ 1)
+

m∑
k=1

τk

]
‖wn−1 − vn−1‖.

Therefore

‖wn − vn‖

≤ N(M∗ + 1)
( (C + C + ωLK0 + ωNH0)ωα

Γ(α+ 1)
+

m∑
k=1

τk

)
‖wn−1 − vn−1‖.

Repeat using the above inequality, we can obtain that

‖wn − vn‖

≤
[
N(M∗ + 1)

( (C + C + ωLK0 + ωNH0)ωα

Γ(α+ 1)
+

m∑
k=1

τk

)]n
‖wn−1 − vn−1‖ → 0

as n→∞. Then there exists a unique u∗ ∈ PC(J,E) such that limn→∞ wn =
limn→∞ vn = u∗. Therefore, let n→∞ in (14), from the continuity of operator
Q, we know that u∗ = Qu∗, which means that u∗ is a unique mild solution of
the problem PBVP(1). �

4. Examples

In this section, we give two examples to demonstrate how to utilize our
results.

Example 4.1. We consider the impulsive fractional parabolic partial differen-
tial equation

(18)


∂αt u(x, t) +A(x,D)u(x, t)
= f(x, t, u(x, t), Fu(x, t), Gu(x, t)), x ∈ Ω, t ∈ J, t 6= tk,
∆u|t=tk = Ik(u(x, tk)), x ∈ Ω, k = 1, 2, . . . ,m,
u|∂Ω = 0,
u(x, 0) = u(x, ω), x ∈ Ω,
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where ∂αt is the Caputo fractional partial derivative of order 0 < α < 1, J =
[0, ω], 0 < t1 < t2 < · · · < tm < ω, integer N ≥ 1, let Ω ⊂ RN is a bounded
domain with a sufficiently smooth boundary ∂Ω,

A(x,D) = −
N∑
i=1

N∑
j=1

aij(x)
∂2

∂xi∂yj
+

N∑
i=1

ai(x)
∂

∂xi
+ a0(x)

is a strongly elliptic operator of second order, coefficient functions aij(x), ai(x)

and a0(x) are Hölder continuous in Ω, f : Ω×J×R×R×R→ R is continuous,
Ik : R→ R are also continuous, k = 1, 2, . . . ,m.

Let E = Lp(Ω) with p > N + 2, P = {u ∈ Lp(Ω) : u(x) ≥ 0, a.e. x ∈ Ω},
and define the operator A as follows:

D(A) = {u ∈W 2,p(Ω) ∩W 1,p
0 (Ω) : u|∂Ω = 0}, Au = A(x,D)u.

Then E is a Banach space, P is a regular cone of E, and −A generates a
positive and analytic C0-semi-group T (t)(t ≥ 0) in E. So, the problem (18)
can be transformed into the PBVP (1). For solving the problem (18), the
following assumptions are needed.

(a) Let f(x, t, 0, 0, 0) ≥ 0, Ik(0) ≥ 0, u(x, ω) ≥ 0, x ∈ Ω, and there exists a
function w = w(x, t) ∈ PC(J,E) ∩ Cα(J,E), such that

∂αt w +A(x,D)w ≥ f(x, t, w, Fw,Gw), (x, t) ∈ Ω× J, t 6= tk,
∆w|t=tk ≥ Ik(w(x, tk)), x ∈ Ω, k = 1, 2, . . . ,m,
u|∂Ω = 0,
w(x, 0) ≥ w(x, ω), x ∈ Ω.

(b) There exists a constant M > 0 such that

f(x, t, x2, y2, z2)− f(x, t, x1, y1, z1) ≥ −M(x2 − x1),

for any t ∈ J , and 0 ≤ x1 ≤ x2 ≤ w(x, t), 0 ≤ y1 ≤ y2 ≤ Fw(x, t), 0 ≤ z1 ≤
z2 ≤ Gw(x, t).

(c) For any u1, u2 ∈ [0, w(x, t)] with u1 ≤ u2, we have

Ik(u1(x, tk)) ≤ Ik(u2(x, tk)), x ∈ Ω, k = 1, 2, . . . ,m.

Assumption (a) implies that v0 ≡ 0 and w0 ≡ w(x, t) are lower and upper
solutions of the PBVP (18) respectively, and from (b) and (c), it is easy to verify
that all conditions of Theorem 3.1 are satisfied, so the PBVP (18) has minimal
and maximal mild solutions between 0 and w(x, t), which can be obtained by
a monotone iterative procedure starting from 0 and w(x, t) respectively. �

Example 4.2. Consider the impulsive fractional differential equation of the
form

(19)


cDα

0+u(t, y) + ∂2

∂y2u(t, y) = f(t, y, u(t, y), Fu(t, y), Gu(t, y)), t 6= tk,

∆u|t=tk = Ik(u(tk, y)), y ∈ [0, π], k = 1, 2, . . . ,m,
u(t, 0) = u(t, π) = 0, t ∈ [0, ω]
u(0, y) = u(ω, y), (t, y) ∈ [0, ω]× [0, π].
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where cDα
0+ is the Caputo fractional derivative of order α ∈ (0, 1), (t, y) ∈

[0, ω]× [0, π].

Let E = L2([0, π]). Define Au = ∂2

∂y2u for u ∈ D(A), where

D(A) =
{
u ∈ E :

∂u

∂y
,
∂2u

∂y2
∈ E, u(0) = u(π) = 0

}
.

Then −A generates a positive C0-semigroup T (t)(t ≥ 0) in E, which is equicon-
tinuous and M = 1.

Let 0 ≤ w ∈ PC(J,E) satisfy the following conditions:
(i) 0 ≤ Ik(w(tk, y)) and Ik(w(tk, y)) ≤ ∆w|t=tk , k = 1, 2, . . . ,m, y ∈ [0, π];
(ii) 0 ≤ w(ω, y) and w(ω, y) ≤ w(0, y), (t, y) ∈ [0, 1]× (0, π);
(iii) Lw(t, y) ≤ f(t, y, w(t, y), 0, 0) and f(t, y, w(t, y), 0, 0) ≤c Dα

0+w(t, y) +
(A− LI)w(t, y), (t, y) ∈ [0, ω]× [0, π], t 6= tk.

Then 0 and w are lower and upper mild solutions of the problem (19).
Therefore, if the functions f and Ik(k = 1, 2, . . . ,m) satisfy the conditions (H1)-
(H4) on the interval [0, w], then the problem (19) has minimal and maximal
mild solutions between 0 and w.

If the functions f and Ik(k = 1, 2, . . . ,m) satisfy the conditions (H1), (H2),
(H6) and (H7) on the interval [0, w], then the problem (19) has at least mild
solutions on [0, w].

If the functions f and Ik(k = 1, 2, . . . ,m) satisfy the conditions (H1)*, (H2),
(H8) and (H9) on the interval [0, w], then the problem (19) has a unique mild
solution on[0, w].
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