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ON THE GROWTH OF ALGEBROID SOLUTIONS OF

ALGEBRAIC DIFFERENTIAL EQUATIONS

Manli Liu and Linlin Wu

Abstract. Using the Nevanlinna value distribution theory of algebroid

functions, this paper investigates the growth of two types of complex
algebraic differential equation with algebroid solutions and obtains two

results, which extend the growth of complex algebraic differential equa-
tion with meromorphic solutions obtained by Gao [4].

1. Introduction and results

The algebroid solution of differential equation, originally studied by P.
Painleve and P. Bouroux, appears more frequently than the meromorphic so-

lution of a differential equation. For example, the equation w′ = 1+w4

2w has
2-valued algebroid solutions. As far as we know, equations with a large range
of single valued meromorphic solutions are very special. Thus, complex differen-
tial equations with multi-valued algebroid solutions have attracted a great deal
of attention. Some scholars studied certain differential equations with single
valued meromorphic solutions, at the same time they also discussed equations
with multi-valued algebroid solutions on related problems.

Let w = w(z) be the ν-valued algebroid function defined by a irreducible
equation

Aν(z)w
ν +Aν−1(z)w

ν−1 + · · ·+A0(z) = 0,

where Aν(z), Aν−1(z), . . . , A0(z) are entire functions without any common ze-
ros in |z| < +∞.

Let w(z) be a ν-value algebroid function and a be a pole of w(z). Then in
a neighbourhood of a, we have the following expansions of w:

w(z) = (z − a)
−τi
βi S((z − a)

1
βi ),
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where i = 1, 2, . . . , ν(a)(≤ ν), 1 ≤ τi, 1 ≤ βi,
∑

βi = ν and S(t) is a regular
power of t such that S(0) ̸= 0. For more theories and basic results we refer the
readers to [8–10,14].

In 1934, Yosida in [13] considered a type of differential equation w′ =
R(z, w), and he showed that the equation can be reduced to a new form with
p ≤ 2ν, q ≤ 2(ν − 1) if it has ν-valued algebriod solutions, which called
Malmquist Theorem of equations with algebriod solutions. With the devel-
opment of this topic, He and Xiao in [7] investigated a type of higher order
differential equations with algebriod solutions, and they gave a correspond-
ing Malmquist Theorem. Obviously, it can be viewed as the generalization of
K. Yosida’s result.

In the year of 1978, Bank ([1]) showed that the growth of meromorphic so-
lutions of linear differential equations, hence of algebraic differential equations,
with meromorphic coefficients cannot be estimated uniformly in terms of the
growth of the coefficients alone. Two years later, such uniform estimates for
the growth of meromorphic solutions were given by Bank ([2]) and Bank-Laine
([3]).

Xiao-He ([12]) and He-Laine ([6]) considered algebraic differential equations
of the form

Ω(z, w) = R(z, w),

where Ω(z, w) is a differential polynomial with meromorphic coefficients, R(z, w)
is irreducible and rational in w. They gave some estimates for the growth of
algebroid solutions of the equation.

Actually, one can see the above equation is only the case that the left hand
side of the above equation is a quite general differential polynomial. It is
natural to pose the question about the growth of meromorphic solutions on a
differential equation with rational left hand side.

In 2002, Gao ([5]) considered the growth of meromorphic solution on two
types of differential equation with rational left hand side as follows:

(1.1)
[ Ω1(z, w)

wk0(w′)k1 · · · (w(n))kn

]m
=

k∑
i=0

ai(z)w
i,

(1.2)
Ω1(z, w)

(w − â)λ1Ω2(z, w)
=

P (z, w)

Q(z, w)
,

where â is a nonzero constant.
It is known to us all, for a differential equation a meromorphic solution is

a special case of an algebroid solution. Especially, we should considered both
poles and branch points of an algebroid solution while we only considered the
poles of a meromorphic solution. Therefore, it inspired us to pose the question
as follows.

Question 1.1. What can be said for the growth of algebroid solutions on the
above two differential equations with rational left hand side?
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In this paper, we shall consider the growth of algebroid solutions on the
generalized higher-order algebraic differential equations and we give our results
as follows:

Theorem 1.1. Let w be a ν-valued algebroid solution of (1.1), 2 ≤ k < m.
Then

T (r, w) ≤ K
(
N(r, w) +N(r, 1

w ) +Nx(r, w)
)
−K1Nb(r, w)

+K2

(∑
(i)

T (r, a(i)(z)) +

k∑
i=0

T (r, ai(z))
)
+ S(r, w),

where K, K1 and K2 are positive constants.

Theorem 1.2. Let w(z) be an algebroid solution of (1.2) with ν branches and
p > q + λ1 + λ2. Then for any σ > 1, there exist positive constants K0 and r0
such that for all r ≥ r0,

T (r, w) ≤ K0F (σr),

where

F (r) = N(r, w) +Nx(r, w) +Nb(r, w) +
∑
(i)

T (r, a(i))

+
∑
(j)

T (r, b(j)) +

p∑
i=0

T (r, ai) +

q∑
j=0

T (r, bj) + 1.

To arrive at our results, we introduce some definitions and notations.
Let

Ω1(z, w) =
∑
(i)∈I

a(i)(z)w
i0(w′)i1 · · · (w(n))in

and
Ω2(z, w) =

∑
(j)∈J

b(j)(z)w
j0(w′)j1 · · · (w(n))jn (n ≥ 1)

be differential polynomials. We denote P (z, w) =
∑p

i=0 ai(z)w
i, Q(z, w) =∑q

j=0 bj(z)w
j , where {a(i)(z)}, {b(j)(z)}, {ai(z)} and {bj(z)} are meromorphic

functions, I = (i0, i1, . . . , in), J = (j0, j1, . . . , jn) are multi-indices of nonnega-
tive integer for a(i) ̸= 0, b(j) ̸= 0, respectively, and apbq ̸= 0.

The term Ω(i) = c(i)w
i0(w′)i1 · · · (w(n))in is a differential monomial in w,

the degree λ(i) and the weight ∆(i) of Ω(i) are defined by λ(i) =
∑n

t=0 it,

∆(i) =
∑n

t=0(t+1)it in Ω1(z, w) or Ω2(z, w). We denote σ(i) =
∑n

t=1(2t−1)it,

l(i) =
∑n

t=2(t− 1)it.
The degrees λ1, λ2 and the weights ∆1, ∆2 of Ω1, Ω2 are defined by

λ1 = max{λ(i)}, ∆1 = max{∆(i)}, λ2 = max{λ(j)}, ∆2 = max{∆(j)}.
Let

σ1 = max{σ(i)}, l1 = max{l(i)}, σ2 = max{σ(j)}, l2 = max{l(j)}.
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In addition, for an algebroid function, we put

nb(r, w) =
∑
|a|≤r

ν(a)∑
i=1

(βi − 1),

νNb(r, w) =

∫ r

0

nb(t, w)− nb(r, w)

t
dt+ nb(0, w) log r.

2. Some lemmas

In this section, we are devoted to proving several technical lemmas. The
proof of the first lemma for algebroid functions is similar to that for meromor-
phic functions in [11], and we omit the proof here.

Lemma 2.1. Let g0(z) and g1(z) be ν-valued algebroid functions and linearly
independent over C, and put

g0(z) + g1(z) = Φ.

Then we have

T (r, g0) ≤ m(r,Φ) +N(r, g0) +N(r, g1) +N(r, 1
g0
) +N(r, 1

g1
) + S(r),

where

S(r)=

{
O(1),when g0 and g1 are rational;

O(log+ T (r, g0)+log+ T (r, g1))+O(log r) (r → ∞, r ̸∈ E), otherwise.

Lemma 2.2. Let w be a ν-valued algebroid function in C and k a positive
integer. Then

N(r, 1
w(k) ) ≤ N(r, 1

w )+kN(r, w)+(2k−1)Nx(r, w)− (k−1)Nb(r, w)+S(r, w).

Proof. Let w(z0) = a ∈ C.
Case (i): If a ̸= ∞, in a neighbourhood of z0, we have

w(α)(z) = (z − z0)
(τ−αβ)/βw1(z), w1(z0) ̸= 0,∞ (τ ≥ 1, α ≥ 1, β > 1).

When τ − αβ < 0, z0 is a pole of w(α)(z) with multiplicity αβ − τ .
Case (ii): If a = ∞, then

w(α)(z) = (z − z0)
−(τ+αβ)/βw1(z), w1(z0) ̸= 0,∞,

which implies that z0 is a pole of w(α)(z) with multiplicity αβ+ τ . Combining
Case (i) with Case (ii), we get

n(r, w(α)) =
∑
w=∞

(τ + αβ) +
∑
w ̸=∞

(−τ + αβ)+,

where (−τ + αβ)+ = max{0,−τ + αβ}. Since β > 1, α ≥ 1, τ ≥ 1, note that

−τ + αβ ≤ αβ − 1 ≤ (2α− 1)(β − 1).
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Thus

n(r, w(α)) ≤
∑
w=∞

(τ + αβ) + (2α− 1)
∑
w ̸=∞

(β − 1)

=
∑
w=∞

(τ + α+ α(β − 1)) + (2α− 1)
∑
w ̸=∞

(β − 1)

=
∑
w=∞

(τ + α) + (2α− 1)
∑
w=∞

(β − 1)

+ (2α− 1)
∑
w ̸=∞

(β − 1)− (α− 1)
∑
w=∞

(β − 1)

=
∑
w=∞

(τ + α) + (2α− 1)
∑
a∈C

(β − 1)− (α− 1)
∑
w=∞

(β − 1)

= n(r, w) + αn(r, w) + (2α− 1)nx(r, w)− (α− 1)nb(r, w),

i.e.,

N(r, w(α)) ≤ N(r, w) + αN(r, w) + (2α− 1)Nx(r, w)− (α− 1)Nb(r, w).

Further, the following inequality gives that

T (r, w)−N(r, 1
w ) ≤ T (r, 1

w(k) )−N(r, 1
w(k) ) + S(r, w).

We obtain

N(r, 1
w(k) )

≤ T (r, w(k)) +N(r, 1
w )− T (r, w) + S(r, w)

≤ m(r, w(k)

w ) +m(r, w) +N(r, w(k)) +N(r, 1
w )− T (r, w) + S(r, w)

≤ m(r, w) +N(r, w) + kN(r, w) + (2k − 1)Nx(r, w)− (k − 1)Nb(r, w)

+N(r, 1
w )− T (r, w) + S(r, w)

≤ N(r, 1
w ) + kN(r, w) + (2k − 1)Nx(r, w)− (k − 1)Nb(r, w) + S(r, w). □

Lemma 2.3 ([7]). Let R(z, w) =
∑p

i=0 ai(z)w
i∑q

j=0 bj(z)wj be an irreducible rational func-

tion in w(z) with the meromorphic coefficients {ai(z)} and {bj(z)}. If w(z) is
a ν-valued algebroid function, then

T (r,R(z, w)) = max{p, q}T (r, w) +O
{∑

T (r, ai) +
∑

T (r, bj)
}
.

Lemma 2.4. Let w be a ν-valued algebroid function. Then

N(r, [ Ω1(z,w)
wk0 (w′)k1 ···(w(n))kn

]m)

≤ C5

(
N(r, w) +N(r, 1

w ) +Nx(r, w)
)
− C4Nb(r, w) +

∑
(i)

N(r, a(i)) + S(r, w)

for some positive constants C4, C5.
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Proof. Let

N(r, [ Ω1(z,w)
wk0 (w′)k1 ···(w(n))kn

]m, [wk0(w′)k1 · · · (w(n))kn ]m)

= N(r, [ Ω1(z,w)
wk0 (w′)k1 ···(w(n))kn

]m) +N(r, [wk0(w′)k1 · · · (w(n))kn ]m)

−N(r, 1
[wk0 (w′)k1 ···(w(n))kn ]m

).

Using the similar method as the proof of Theorem 1 in [4], we can obtain

N(r, [ Ω1(z,w)
wk0 (w′)k1 ···(w(n))kn

]m, [wk0(w′)k1 · · · (w(n))kn ]m)

≤ max{N(r,Ω1(z, w)
m), N(r, [wk0(w′)k1 · · · (w(n))kn ]m)}.

Further

(2.1)

N(r, [ Ω1(z,w)
wk0 (w′)k1 ···(w(n))kn

]m)

≤ max{N(r,Ω1(z, w)
m), N(r, [wk0(w′)k1 · · · (w(n))kn ]m)}

+N(r, 1
[wk0 (w′)k1 ···(w(n))kn ]m

)−N(r, [wk0(w′)k1 · · · (w(n))kn ]m).

Next, we will give the estimation of

N(r,Ω1(z, w)
m), N(r, [wk0(w′)k1 · · · (w(n))kn ]m), N(r, 1

[wk0 (w′)k1 ···(w(n))kn ]m
).

First,

N(r,Ω1(z, w)
m) ≤ m[λ1N(r, w) + (∆1 − λ1)N(r, w) + σ1Nx(r, w)

− l1Nb(r, w)] +m
∑
(i)

N(r, a(i)(z))

≤ m
(
∆1N(r, w) + σ1Nx(r, w)− l1Nb(r, w) +

∑
(i)

N(r, a(i))
)
,

Next,

N(r, [wk0(w′)k1 · · · (w(n))kn ]m) ≤ m(

n∑
i=0

(i+ 1)ki)N(r, w)−m(

n∑
i=1

iki)Nb(r, w)

+m(

n∑
i=1

(2i− 1)ki)Nx(r, w).

By using Lemma 2.2, it yields

(2.2)

N(r, 1
[wk0 (w′)k1 ···(w(n))kn ]m

)

≤ m{k0N(r, 1
w ) + k1N(r, 1

w′ ) + · · ·+ knN(r, 1
w(n) )}

≤ m{k0N(r, 1
w ) + · · ·+ kn[N(r, 1

w ) + nN(r, w)

+ (2n− 1)Nx(r, w)− (n− 1)Nb(r, w)]}
≤ C1N(r, w) + C2N(r, 1

w ) + C3Nx(r, w)− C4Nb(r, w)

for some positive constants Ci (i = 1, 2, 3, 4).
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It follows from (2.1) and (2.2) that

N(r, [ Ω1(z,w)
wk0 (w′)k1 ···(w(n))kn

]m)

≤ max{N(r,Ω1(z, w)
m), N(r, [(w′)k1 · · · (w(n))kn ]m)}

+ C1N(r, w) + C2N(r, 1
w ) + C3Nx(r, w)− C4Nb(r, w)

≤∆N(r, w) + C1N(r, w) + C2N(r, 1
w ) + C3Nx(r, w)

− C4Nb(r, w) +
∑
(i)

N(r, a(i)) + S(r, w)

≤ C5(N(r, w) +N(r, 1
w ) +Nx(r, w))− C4Nb(r, w)

+
∑
(i)

N(r, a(i)) + S(r, w),

where ∆ = max{m∆1 − m(k0 + 2k1 + · · · + (n + 1)kn), 0}, C5 = max{∆ +
C1, C2, C3}.

This completes the proof of Lemma 2.4. □

Lemma 2.5. Let w be a ν-valued algebroid function and â be a nonzero con-
stant. Then

N(r, Ω1

(w−â)λ1Ω2
) ≤ λ1N(r, 1

w−â ) +N(r, 1
Ω2

)

+ (∆1 − λ1)(N(r, w) +Nb(r, w)) +
∑
(i)

N(r, a(i)).

Proof. We denote the order of pole of w at z = z0 as n(r, w).
Case (i): when z0 is not a pole of w,

(2.3) n(r, Ω1

(w−â)λ1Ω2
) ≤ n(r, 1

(w−â)λ1
) + n(r, 1

Ω2
) +

∑
(i)

n(r, a(i)).

Case (ii): when z0 is a pole of w, in a neighbourhood of â,

n(r, ( w(l)

w−â )
il) = n(r, ( (w−â)(l)

w−â )il) = βlil.

Therefore

(2.4)

n(r,
a(i)w

i0 ···(w(n))in

(w−â)λ1Ω2
)

≤ β

n∑
l=1

lil + n(r, 1
Ω2

) + n(r, a(i))

= β
( n∑

l=1

(l + 1)il −
n∑

l=1

il

)
+ n(r, 1

Ω2
) + n(r, a(i)).

In the following, we will proof that claim:

(2.5) n(r, Ω1

(w−â)λ1Ω2
) ≤ (∆1 − λ1)β +

∑
n(r, a(i)) + n(r, 1

Ω2
).
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In order to proof our claim, we make use of the methods of mathematical
induction. In fact, for i = 1, one can immediately see that Ω1(z, w) is a
differential monomial. Thus, it follows from (2.4), we can obtain that inequality
(2.5) holds for i = 1.

Now, we suppose inequality (2.5) holds for i = n. For convenience, let Ω =∑n
i=1 a(i)w

i0 · · · (w(n))in and ∆, λ be the weight and the degree of∑n
i=1 a(i)w

i0 · · · (w(n))in , respectively.

For i = n+ 1, we have Ω1 = Ω+ a(n+1)w
i0 · · · (w(n))in and

Ω1

(w − â)λ1Ω2

=
Ω

(w − â)λ1Ω2

+
a(n+1)w

i0 · · · (w(n))in

(w − â)λ1Ω2

.

Thus

(2.6)

n
(
r, Ω1

(w−â)λ1Ω2

)
≤ max

{
n(r, Ω

(w−â)λ1Ω2
), n(r,

a(n+1)w
i0 ···(w(n))in

(w−â)λ1Ω2
)
}

≤ max
{
(∆− λ)β +

n∑
i=1

n(r, a(i)) + n(r, 1
Ω2

),

(∆(n+1) − λ(n+1))β + n(r, a(n+1)) + n(r, 1
Ω2

)
}
,

where ∆(n+1), λ(n+1) are the weight and the degree of a(n+1)w
i0 · · · (w(n))in ,

respectively.
Now, we discuss inequality (2.6) by the following two cases.
Case (a): If λ ≥ λ(n+1), we can get

(∆− λ)β +
∑

n(r, a(i)) + n(r, 1
Ω2

)

= (∆− λ(n+1))β + (λ(n+1) − λ)β +
∑

n(r, a(i)) + n(r, 1
Ω2

)

≤ (∆− λ(n+1))β +
∑

n(r, a(i)) + n(r, 1
Ω2

).

Let ∆0 = max{∆(n+1),∆}. Then

n(r,Ω) ≤ (∆0 − λ(n+1))β +
∑

n(r, a(i)) + n(r, 1
Ω2

).

Case (b): If λ(n+1) ≥ λ, we have

(∆(n+1) − λ(n+1))β + n(r, a(n+1)) + n(r, 1
Ω2

)

= (∆(n+1) − λ)β + (λ− λ(n+1))β + n(r, a(n+1)) + n(r, 1
Ω2

)

≤ (∆(n+1) − λ)β + n(r, a(n+1)) + n(r, 1
Ω2

).

Again, ∆0 = max{∆(n+1),∆}. Then

n(r,Ω) ≤ (∆0 − λ)β +

n+1∑
i=1

n(r, a(i)) + n(r, 1
Ω2

).
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Combining Case (a) with Case (b), we can obtain that inequality (2.6) holds for
i = n+1. Thus, inequality (2.5) is proved. From (2.3) and (2.5), we completes
the proof of Lemma 2.5. □

Lemma 2.6 ([6]). Let U(r), H(r) (r ∈ [0,∞)) be two nonnegative and non-

decreasing functions, H(r) → ∞ as r → ∞, ã and b̃ two positive numbers,

H(r0) ≥ max{(ã+ b̃) log 2, 22+
b̃
ã ã(ã+ b̃)}, for all r and t, 0 < r0 ≤ r < t, if the

following inequality satisfies

U(r) < ã log+ U(t) + b̃ log
t

t− r
+H(r),

then we have for 0 < r0 ≤ r < t,

U(r) < (ã+ b̃) log
t

t− r
+ 2H(t).

3. Proof of Theorem 1.1

Proof. We rewrite equation (1.1) as[
Ω1(z,w)

wk0 (w′)k1 ···(w(n))kn

]m
= ak(w + d(z))k +

t∑
s=0

ds(z)w
s, 0 ≤ t ≤ k − 2,

where d(z) = ak−1

kak
and ds is a rational function of ai (0 ≤ i ≤ k). Let

A = −ak(z)(w + d(z))k, B =
[

Ω1(z,w)
wk0 (w′)k1 ···(w(n))kn

]m
, Φ =

t∑
s=0

ds(z)w
s.

Then
A+B = Φ.

Next, we claim that A and B are linearly independent.
We will prove this claim by contradiction. If A and B are linearly dependent,

by the knowledge of linear algebra, there exist a and b such that

(3.1) aA(z) + bB(z) = 0, |a|+ |b| ≠ 0.

From (1.1) and (3.1), one can deduce that

aakw
k + aak−1w

k−1 + · · ·+ aakd
k = bakw

k + bak−1w
k−1 + · · ·+ ba0.

Let D be a field of meromorphic functions ai satisfying T (r, ai) = S(r, w).
Then 1, w, w2, . . . , wk are linear independent over D. It shows that a = b.

But

aA(z) + bB(z) = a(A(z) +B(z)) = a

t∑
s=0

ds(z)w
s.

Since
∑t

s=0 ds(z)w
s ̸≡ 0, this is a contradiction. Thus we have a = b = 0.

By Lemma 2.1, we obtain

(3.2) T (r,A) ≤ m(r,Φ) +N(r,A) +N(r,B) +N(r, 1
A ) +N(r, 1

B ) + S(r).

Now, we give the estimation of each term of (3.2).
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From Lemma 2.3, we obtain

T (r,A) = kT (r, w) + T (r, ak) + T (r, ak−1),

T (r,Φ) = tT (r, w) +

t∑
s=0

T (r, ds),

N(r,A) ≤ kN(r, w) +N(r, ak) +N(r, 1
ak
) +N(r, ak−1),

T (r, Ω1(z,w)
wk0 (w′)k1 ···(w(n))kn

) =
T (r,Φ−A)

m
=

k

m
T (r, w) +

1

m

k∑
i=0

T (r, ai).

By Lemma 2.4, we have

N(r,B) ≤ C5(N(r, w) +N(r, 1
w ) +Nx(r, w))− C4Nb(r, w) +

∑
(i)

T (r, a(i)) + S(r, w).

Note that

N(r, 1
A ) ≤ N(r, 1

w+d(z) ) +N(r, 1
ak
)

≤ T (r, w) + T (r, d(z)) + T (r, ak) +O(1),

N(r, 1
B ) = N(r, 1/ Ω1(z,w)

wk0 (w′)k1 ···(w(n))kn
)

≤ T (r, Ω1(z,w)
wk0 (w′)k1 ···(w(n))kn

) +O(1)

≤ k

m
T (r, w) +

1

m

k∑
j=0

T (r, aj) +O(1).

By the above estimation of each term and combining with (3.2), it gives

kT (r, w) ≤ T (r, w) +
k

m
T (r, w) + tT (r, w) + (k + 1)N(r, w)

− C4Nb(r, w) + C5(N(r, w) +N(r, 1
w ) +Nx(r, w))

+K1

[∑
(i)

T (r, a(i)) +

k∑
j=0

T (r, aj)
]
+ S(r, w).

Further, (
k − 1− k

m
− t

)
T (r, w)

≤ (k + 1)N(r, w) + C5(N(r, w) +N(r, 1
w ) +Nx(r, w))

− C4Nb(r, w) +K1

[∑
(i)

T (r, a(i)) +

k∑
j=0

T (r, aj)
]
+ S(r, w).

By the assumption that m > k ≥ 2 and 0 ≤ t ≤ k − 2, we can give that
(k − 1− k

m − t) > 0. Immediately, we have for constants K, K1 and K2

T (r, w) ≤ K(N(r, w) +N(r, 1
w ) +Nx(r, w))−K1Nb(r, w)
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+K2

[∑
(i)

T (r, a(i)) +

k∑
j=0

T (r, aj)
]
+ S(r, w).

This completes the proof of Theorem 1.1. □

4. Proof of Theorem 1.2

Proof. First, suppose that w(z) is a ν-valued algebriod function satisfying∑p
i=0 ai(z)w

i ≡ 0. Then we have

ap(z)w
p = −ap−1(z)w

p−1 − · · · − a0(z).

By applying Lemma 2.3 on the above equation, one can see that there exists
a positive constant K0 such that

pT (r, w) + T (r, ap) ≤ (p− 1)T (r, w) +

p−1∑
i=0

T (r, ai(z)),

T (r, w) ≤ K

p∑
i=0

T (r, ai(z)) ≤ K0F (r).

If
∑p

i=0 ai(z)w
i ̸≡ 0, we rewrite equation (1.2) as follows

(4.1) Q(z, w) · Ω1(z, w)

(w − â)λ1Ω2
= P (z, w).

Since

Ω1

(w − â)λ1Ω2

=
∑

a(i)

( w

w − â

)i0( (w − â)′

w − â

)i1
· · ·

( (w − â)(n)

w − â

)in 1

(w − â)λ1−
∑n

l=0 il

1

Ω2
,

we have

(4.2)

m(r, Ω1

(w−â)λ1Ω2
)

≤ λ1m(r, 1
w−â ) +m(r, 1

Ω2
) +m(r,

∑
a(i)) +

n∑
α=1

m(r, (w−â)(α)

w−â ).

By Lemma 2.5, we get

(4.3)
N(r, Ω1

(w−â)λ1Ω2
) ≤ λ1N(r, 1

w−â ) + (∆1 − λ1)(N(r, w) +Nb(r, w))

+N(r, 1
Ω2

) + n(r,
∑

a(i)).

From (4.2) and (4.3), we obtain

T (r, Ω1

(w−â)λ1Ω2
) ≤ λ1T (r,

1
w−â ) + (∆1 − λ1)(N(r, w) +Nb(r, w))

+ T (r,Ω2) + T (r,
∑

a(i)) +

n∑
α=1

m(r, (w−â)(α)

w−â ).
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Further, we have

T (r, Ω1

(w−â)λ1Ω2
)

≤ λ1T (r,
1

w−â ) + λ2T (r, w) + (∆2 − λ2 +∆1 − λ1)N(r, w)

+ (∆1 − λ1 − l2)Nb(r, w) + σ2Nx(r, w) + T (r,
∑

a(i))

+ T (r,
∑

b(j)) +

n∑
α=1

m(r, (w−â)(α)

w−â ).

Using Lemma 2.3 and together with the above inequality, we get

(4.4)

T (r,Q(z, w) Ω1(z,w)
(w−â)λ1Ω2(z,w)

)

≤ T (r,Q(z, w)) + T (r, Ω1(z,w)
(w−â)λ1Ω2(z,w)

)

≤ qT (r, w) + (λ1 + λ2)T (r, w) + (∆2 − λ2 +∆1 − λ1)N(r, w)

+ (∆1 − λ1 − l2)Nb(r, w) + σ2Nx(r, w)

+
∑
(i)

T (r, a(i)) +
∑
(j)

T (r, b(j)) +

q∑
j=0

T (r, bj)

+

n∑
α=1

m(r, w(α)

w ) +

n∑
α=1

m(r, (w−â)(α)

w−â ).

By means of Lemma 2.3, we get

(4.5) T (r, P (z, w)) = pT (r, w) +O
{ p∑

i=0

T (r, ai)
}
.

From (4.4) and (4.5), it yields

pT (r, w) < (q + λ1 + λ2)T (r, w) + (∆2 − λ2 +∆1 − λ1)N(r, w)

+ (∆1 − λ1 − l2)Nb(r, w) + σ2Nx(r, w)

+
∑
(i)

T (r, a(i)) +
∑
(j)

T (r, b(j)) +

q∑
j=0

T (r, bj)

+

n∑
α=1

m(r, w(α)

w ) +

n∑
α=1

m(r, (w−â)(α)

w−â ).

Noting that p > q + λ1 + λ2. One can observe

(4.6)

T (r, w) <
∆2 − λ2 +∆1 − λ1

p− (q + λ1 + λ2)
N(r, w) +

σ2

p− (q + λ1 + λ2)
Nx(r, w)

+
(∆1 − λ1 − l2)

p− (q + λ1 + λ2)
Nb(r, w) +Q1(r) +D(r),
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where

Q1(r) =
1

p− (q + λ1 + λ2)

{∑
(i)

T (r, a(i)) +
∑
(j)

T (r, b(j)) +

q∑
j=0

T (r, bj)
}
,

D(r) =

n∑
α=1

m(r, w(α)

w ) +

n∑
α=1

m(r, (w−â)(α)

w−â ).

By applying the generalized lemma of logarithmic derivative to D(r), it is
easy to get from the inequality (4.6) that

(4.7) T (r, w) < ã log T (t, w) + b̃ log
t

t− r
+H(r),

where ã and b̃ are positive constants, and

H(r) =
∆2 − λ2 +∆1 − λ1

p− (q + λ1 + λ2)
N(r, w) +

σ2

p− (q + λ1 + λ2)
Nx(r, w) +Q1(r).

Applying Lemma 2.4 to (4.7) and we get

T (r, w) < (ã+ b̃) log
t

t− r
+ 2H(t).

Set t = σr, σ > 1. Then T (r, w) ≤ K0F (σr). The proof is completed. □
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