• Title/Summary/Keyword: Normal Deformation

Search Result 566, Processing Time 0.024 seconds

Exact deformation of an infinite rectangular plate with an arbitrarily located circular hole under in-plane loadings

  • Yang, Yeong-Bin;Kang, Jae-Hoon
    • Structural Engineering and Mechanics
    • /
    • v.58 no.5
    • /
    • pp.783-797
    • /
    • 2016
  • Exact solutions for stresses, strains, and displacements of a perforated rectangular plate by an arbitrarily located circular hole subjected to both linearly varying in-plane normal stresses on the two opposite edges and in-plane shear stresses are investigated using the Airy stress function. The hoop stress occurring at the edge of the non-central circular hole are computed and plotted. Stress concentration factors (the maximum non-dimensional hoop stresses) depending on the location and size of the non-central circular hole and the loading condition are tabularized.

Multicriteria shape design of an aerosol can

  • Aalae, Benki;Abderrahmane, Habbal;Gael, Mathis;Olivier, Beigneux
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.3
    • /
    • pp.165-175
    • /
    • 2015
  • One of the current challenges in the domain of the multicriteria shape optimization is to reduce the calculation time required by conventional methods. The high computational cost is due to the high number of simulation or function calls required by these methods. Recently, several studies have been led to overcome this problem by integrating a metamodel in the overall optimization loop. In this paper, we perform a coupling between the Normal Boundary Intersection - NBI - algorithm with Radial Basis Function - RBF - metamodel in order to have a simple tool with a reasonable calculation time to solve multicriteria optimization problems. First, we apply our approach to academic test cases. Then, we validate our method against an industrial case, namely, shape optimization of the bottom of an aerosol can undergoing nonlinear elasto-plastic deformation. Then, in order to select solutions among the Pareto efficient ones, we use the same surrogate approach to implement a method to compute Nash and Kalai-Smorodinsky equilibria.

Fault determination of power transformer by using analysis of vibration signal (진동신호 분석을 이용한 변압기 고장판별법 연구)

  • Park, Su-Mun;Chung, Chan-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1152-1154
    • /
    • 1996
  • In power transformers, vibration occurs at winding, core and case due to current, voltage, temperature changing and winding reformation. Winding deformation and change of vibration signals are occurred due to electromagnetic force induced by fault current. In this paper, in normal and fault states, the trends of fundamental waves and higher harmonics are considered. To inspect the factors that affect the fundamental waves and higher harmonics, the trends are considered with varying voltage and load. Determination functions are generated and applied to signals so that normal and fault state are determined by determination functions.

  • PDF

Statistical Analysis on Lateral Wheel Path Distributions of 2nd and 3rd Traffic Lanes (2, 3차로 통행차량의 횡방향 이격거리에 대한 통계 분석 연구)

  • Kim, Nak-seok
    • Journal of the Society of Disaster Information
    • /
    • v.5 no.1
    • /
    • pp.30-44
    • /
    • 2009
  • Asphalt concrete pavements are often destroyed within the intended design life due to the increasement in traffic volume. The most common types of asphalt concrete pavement damages are permanent deformation and fatigue cracking, and so on. In this research, characteristics of traffic loadings and lateral wheel path distributions are analyzed using the field survey on traffic flow. The obtained traffic characteristics can be used to the decision making for the maintenance policy of roads. According to the traffic lane analysis for the 2nd and 3rd lanes, inner lane vehicles tended to pass to the right side to avoid the opposite side vehicles. In addition, the outside lane vehicles were deviated to the left side to avoid passengers. It is also noted that the lateral wheel path distributions was close to the normal distribution.

  • PDF

Nano Wear Behavior of a-C Films with Variation of Surface Roughness (표면거칠기의 변화에 따른 a-C 박막의 나노마멸 거동)

  • 채영훈;장영준;나종주;김석삼
    • Tribology and Lubricants
    • /
    • v.20 no.3
    • /
    • pp.125-131
    • /
    • 2004
  • Nano-wear behavior of amorphous carbon films was studied by Atomic Force Microscopy. The a-C films are deposited on Si(100) substrate by DC magnetron sputtering method. The influences of different surface roughness on the nano-wear are investigated. Nano-wear tests were carried out using a very sharp diamond coated tip. Its spring constant was 1.6 N/m and radius of curvature was 110 nm. Normal force used in the wear tests ranged 0 to 400 nN. It was found that surface depression occurred during scratching because of plastic deformation and abrasive wear (cutting St ploughing). Wear depth increased linearly with normal force. Changing the surface roughness variables according to the bias pulse control, the less surface roughness decreased the wear depth. The thickness did not affect the wear resistance.

Numerical Analysis of Wave Deformation with Sea Bottom Variation(II) (해저지형 변화에 따른 파랑의 수치해석(II))

  • 김성덕;이성대
    • Water for future
    • /
    • v.20 no.1
    • /
    • pp.49-54
    • /
    • 1987
  • A numerical analysis of the characteristics of wave reflection over rippled beds (sand bars) was carried out By Boundary Element Method(B.E.M) using linear elements. It is assumed that the incident wave is normal and oblique to the rippled beds and the wave may be and the escribed by two-dimensional linear theory. The accuracy of the computational scheme is investigated by comparing the laboratory data, the analytic measured results of the other researchers. The B.E.M results for the normal incident wave is held for the mechanism of the resonant Bragg reflection at the point where the wave length of the bottom undulation is one half the wave length of the surface wave.

  • PDF

Dynamic analysis of a flexible multibody system

  • Chae Jang-Soo;Park Taw-Won;Kim J.
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.4
    • /
    • pp.21-25
    • /
    • 2005
  • In the dynamic analysis of a mechanism, if one or more of the components are flexible, then the simulation will not be accurate because of the violation of the rigid body assumption. Mode shapes are used to represent the dynamic behavior of an elastic structure. A modal synthesis method which uses a combination of normal modes, constraint modes, and attachment modes, was used to represent effectively the elastic deformation of a flexible multibody. Since the combination of these modes should be different for each type of connecting part, the modal synthesis method was studied for the various types of interconnecting joints. In addition, the analysis procedure for the flexible body was explained. A satellite system with flexible solar panels was chosen as an example to show the effectiveness of the proposed method.

Evaluation of Strength of Normal and Lightweight Aggregate Concrete Using Ultrasonic Velocity Method in Early Age (초기 재령에서 초음파 속도법을 활용한 보통 및 경량 골재 콘크리트의 강도 발현 평가)

  • Nam, Young-Jin;Kim, Won-Chang;Choi, Hyeong-Gil;Ryu, Jung-Rim;Lee, Tae-Gyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.55-56
    • /
    • 2023
  • Recently, large and high-rise buildings are increasing, and accordingly, concrete weight reduction is required. Lightweight aggregate concrete can provide economic feasibility and large space, but safety can be reduced due to problems such as low strength and poor durability. Since the development of such low strength of concrete is important in the early construction stage, it is necessary to evaluate the vertical formwork demolding period at the early age. The correlation was analyzed by measuring the compressive strength and ultrasonic pulse velocity. As a result, the ultrasonic pulse rates of normal and lightweight aggregate concrete at the time of 5 MPa expression, which is the time of vertical mold deformation, were 3.07 km/s and 2.77 km/s for W/B 41, and 2.89 km/s and 2.73 km/s for W/B 33.

  • PDF

Computing of output of piezoelectric actuator under voltage excitation

  • Yongfeng Fang;Kong Fah Tee;Yong Yan
    • Smart Structures and Systems
    • /
    • v.33 no.5
    • /
    • pp.359-364
    • /
    • 2024
  • It is difficult to calculate the output force of a single-layer piezoelectric actuator under voltage excitation. In this paper, the piezoelectric actuator is organically combined with the mass-spring-damping system, and the deformation of the piezoelectric actuator under voltage excitation is transformed into the displacement of the mass-spring-damping system. Then, according to the differential equation of the system, the formulae of the mechanical output of the piezoelectric actuator under sinusoidal alternating current and DC step excitation are obtained by using the Laplace change and the inverse change, respectively. Finally, the proposed equations are verified by using ceramic piezoelectric actuators and PVDF actuators, respectively. The results are compared with the existing ones, which shows that the proposed method is feasible, easy, and practical.

Plane strain consolidation of a compressible clay stratum by surface loads

  • Rani, Sunita;Puri, Manoj;Singh, Sarva Jit
    • Geomechanics and Engineering
    • /
    • v.7 no.4
    • /
    • pp.355-374
    • /
    • 2014
  • An analytical solution of the fully coupled system of equations governing the plane strain deformation of a poroelastic medium with anisotropic permeability and compressible fluid and solid constituents is obtained. This solution is used to study the consolidation of a poroelastic clay layer with free permeable surface resting on a rough-rigid permeable or impermeable base. The stresses and the pore pressure are taken as the basic state variables. Displacements are obtained by integrating the coupled constitutive relations. The case of normal surface loading is discussed in detail. The solution is obtained in the Laplace-Fourier domain. Two integrations are required to obtain the solution in the space-time domain which are evaluated numerically for normal strip loading. Consolidation of the clay layer and diffusion of pore pressure is studied for both the bases. It is found that the time settlement is accelerated by the permeability of the base. Initially, the pore pressure is not affected by the permeability of the base, but has a significant effect, as we move towards the bottom of the layer. Also, anisotropy in permeability and compressibilities of constituents of the poroelastic medium have a significant effect on the consolidation of the clay layer.