DOI QR코드

DOI QR Code

Computing of output of piezoelectric actuator under voltage excitation

  • Yongfeng Fang (Ningxia Normal University, School of Physics and Electric Information) ;
  • Kong Fah Tee (Department of Civil and Environmental Engineering, King Fahd University of Petroleum and Minerals) ;
  • Yong Yan (Ningxia Normal University, School of Physics and Electric Information)
  • Received : 2023.10.16
  • Accepted : 2024.04.01
  • Published : 2024.05.25

Abstract

It is difficult to calculate the output force of a single-layer piezoelectric actuator under voltage excitation. In this paper, the piezoelectric actuator is organically combined with the mass-spring-damping system, and the deformation of the piezoelectric actuator under voltage excitation is transformed into the displacement of the mass-spring-damping system. Then, according to the differential equation of the system, the formulae of the mechanical output of the piezoelectric actuator under sinusoidal alternating current and DC step excitation are obtained by using the Laplace change and the inverse change, respectively. Finally, the proposed equations are verified by using ceramic piezoelectric actuators and PVDF actuators, respectively. The results are compared with the existing ones, which shows that the proposed method is feasible, easy, and practical.

Keywords

Acknowledgement

The work described in this paper was supported in part by the Ningxia key research and development program, China (2020BEB4040, 2022BSB03101), Ningxia fundamental research project (2022AAC3335, 2023AAC03332, 2023AAC03339, 2023AAC 03353), NSFC (12365025) and the university research project of Ningxia (NYG2024167).

References

  1. Callipari, F., Sabatini, M., Angeletti, F., Iannelli, P. and Gasbarri, P. (2022), "Active vibration control of large space structures: Modelling and experimental testing of offset piezoelectric stack actuators", Acta Astronautica, 198, 733-745. https://doi.org/10.1016/j.actaastro.2022.05.058
  2. Dang, N.L., Pham, Q.Q. and Kim, J.T. (2021), "Piezoelectric skin sensor for electromechanical impedance responses sensitive to concrete damage in prestressed anchorage zone", Smart Struct. Syst., Int. J., 28(6), 761-777. https://doi.org/10.12989/sss.2021.28.6.761
  3. Fang Y, Tee, K.F. and Wen, L. (2021), "Analytical solution of monomorph and bimorph piezoelectric cantilever beams", Sensors Mater., 33(7), 2407-2413. https://doi.org/10.18494/SAM.2021.3210
  4. Fang, Y., Fang, Z., Tee, K.F. and Tuo, Y. (2023), "Reliability computation of piezoelectric actuator embedded in flexible smart rectangle cantilever beam under complex gust load", Sensors Mater., 35(5), 1741-1751. https://doi.org/10.18494/SAM4345
  5. Habib, G., Fainshtein, E., Wolf, K.D. and Gottlieb, O. (2022), "The influence of nonlinear damping on the response of a piezoelectric cantilever sensor in a symmetric or asymmetric configuration", Smart Struct. Syst., Int. J., 30(3), 239-243. https://doi.org.10.12989/sss.2022.30.3.239
  6. Holman, J.B., Zhu, X. and Cheng, H. (2023), "Piezoelectric micropump with integrated elastomeric check valves: design, performance characterization and primary application for 3D cell culture", Biomed. Microdev., 25, 5-20. https://doi.org/10.1007/s10544-022-00645-9
  7. Jiang, X., Zheng, J., Wang, N. and Pan, J. (2023), "Sensitivity of piezoelectric stack actuators", Sensors, 23, 9542. https://doi.org/10.3390/s23239542
  8. Liu, Y. (2023), "Advance piezo-actuator technologies for hard disk drive applications", Microsyst. Technol., 29, 1117-1127. https://doi.org/10.1007/s00542-023-05460-7
  9. Nanda, N. and Nath, Y. (2012), "Active control of delaminated composite shells with piezoelectric sensor/actuator patches", Struct. Eng. Mech., Int. J., 42(2), 211-228. https://doi.org.10.12989/sem.2012.42.2.211
  10. Qian, L., Li, Y., Sun, Q. and Ge, J.Y. (2022), "Dynamic characteristics study of PVDF shock sensor", Transd. Microsyst. Technol., 41(7), 33-37. https://doi.org.10.13873/J.1000-9787(2022)07-0033-04
  11. Rasid, S.M.R., Michael, A. and Pota, H.R. (2023), "Dynamic modeling of a piezoelectric micro-lens actuator with experimental validation", Sensors Actuators A: Phys., 356(16), 114344. https://doi.org/10.1016/j.sna.2023.114344
  12. Robinson, P., Vishwanath, K.H. and Ashwini, M.V. (2021), "A study on structural analysis of composite beam structure", Materials Today: Proceedings, 45, 434-439. https://doi.org/10.1016/J.MATPR.2020.12.1154
  13. Roy, I.D. and Eversman, W. (1996), "Adaptive flutter suppression of an unswept wing", J. Aircraft, 33(4), 775-783. https://doi.org/10.2514/3.47014
  14. Shami, Z.A., Giraud-Audine, C. and Thomas, O. (2022), "A nonlinear piezoelectric shunt absorber with a 2:1 internal resonance: Theory", Mech. Syst. Signal Process., 170, 108768. https://doi.org/10.1016/j.ymssp.2021.108768
  15. Sun, K., Wang, H.F., Li, M. and Cui, Y.L. (2017), "Analysis of electrical damping of piezoelectric bimorph actuator", J. Qingdao Univ. (Natural Science Ed.), 30(4), 84-88. https://doi.org.10.3969/j.issn.1006-1037.2014.11.16
  16. Versiani, T.D.S.S., Silvestre, F.J., Neto, A.B.G., Rade, D.A., da Silva, R.G.A., Donadon, M.V., Bertolin, R.M. and Silva, G.C. (2019), "Gust load alleviation in a flexible smart idealized wing", Aerosp. Sci. Technol., 86, 762-774. https://doi.org/10.1016/jast.2019.01.058
  17. Wang, B. (2018), "System reliability analysis of piezoelectric truss structures", Ph.D. Dissertation; Harbin Engineering University, Harbin, China.
  18. Wang, Y., Zhu, L. and Du, C. (2021), "Progress in piezoelectric nanogenerators based on PVDF composite films", Micromach., 12, 1278. https://doi.org/10.3390/mi12111278
  19. Wang, H., Li, Y., Hui, H. and Rong, T. (2022), "Analysis of electromechanical characteristics of the 1-3-2 piezoelectric composite and 1-3-2 modified structural material", Ceramics Int., 48, 22323-22334. https://doi.org.10.1016/j.ceramint.2022.04.238
  20. Weimann, T., Molter, A., Fernandez, L. and He, M. (2023), "Structural vibration control based on the effect of acoustic black holes and piezoelectric actuators", Finite Elem. Anal. Des., 224(15), 103992. https://doi.org/10.1016/j.finel.2023.103992
  21. Wu, Y., Ma, Y., Zheng, H. and Ramakrishna, S. (2021), "Piezoelectric materials for flexible and wearable electronics: A review", Mater. Des., 211, 110164. https://doi.org/10.1016/j.matdes.2021.110164
  22. Xu, L., Li, H. and Li, C. (2016), "Displacements of the flexible ring for an electromechanical integrated harmonic piezodrive system", Struct. Eng. Mech., Int. J., 60(6), 1079-1092. https://doi.org.10.12989/sem.2016.60.6.1079
  23. Zhang, X., Chen, L. Wang, L. and She, X. (2022), "Power output characteristics analysis of multilayer PVDF stacked piezoelectric cantilever beam", J. Vib. Shock, 41(5), 217-224. https://doi.org.10.13465./j.cnki.jvs.2022.15.028
  24. Zhou, M.R., Zhou, Z.H., Liu, X., Cao, T.S. and Li, Z.H. (2023), "Improved Bouc-Wen model of piezoelectric actuator and its positioning compensation control study", J. Vib. Shock, 42(10), 155-164. https://doi.org.10.13465/j.cnki.jvs.2023.10.019