Acknowledgement
The work described in this paper was supported in part by the Ningxia key research and development program, China (2020BEB4040, 2022BSB03101), Ningxia fundamental research project (2022AAC3335, 2023AAC03332, 2023AAC03339, 2023AAC 03353), NSFC (12365025) and the university research project of Ningxia (NYG2024167).
References
- Callipari, F., Sabatini, M., Angeletti, F., Iannelli, P. and Gasbarri, P. (2022), "Active vibration control of large space structures: Modelling and experimental testing of offset piezoelectric stack actuators", Acta Astronautica, 198, 733-745. https://doi.org/10.1016/j.actaastro.2022.05.058
- Dang, N.L., Pham, Q.Q. and Kim, J.T. (2021), "Piezoelectric skin sensor for electromechanical impedance responses sensitive to concrete damage in prestressed anchorage zone", Smart Struct. Syst., Int. J., 28(6), 761-777. https://doi.org/10.12989/sss.2021.28.6.761
- Fang Y, Tee, K.F. and Wen, L. (2021), "Analytical solution of monomorph and bimorph piezoelectric cantilever beams", Sensors Mater., 33(7), 2407-2413. https://doi.org/10.18494/SAM.2021.3210
- Fang, Y., Fang, Z., Tee, K.F. and Tuo, Y. (2023), "Reliability computation of piezoelectric actuator embedded in flexible smart rectangle cantilever beam under complex gust load", Sensors Mater., 35(5), 1741-1751. https://doi.org/10.18494/SAM4345
- Habib, G., Fainshtein, E., Wolf, K.D. and Gottlieb, O. (2022), "The influence of nonlinear damping on the response of a piezoelectric cantilever sensor in a symmetric or asymmetric configuration", Smart Struct. Syst., Int. J., 30(3), 239-243. https://doi.org.10.12989/sss.2022.30.3.239
- Holman, J.B., Zhu, X. and Cheng, H. (2023), "Piezoelectric micropump with integrated elastomeric check valves: design, performance characterization and primary application for 3D cell culture", Biomed. Microdev., 25, 5-20. https://doi.org/10.1007/s10544-022-00645-9
- Jiang, X., Zheng, J., Wang, N. and Pan, J. (2023), "Sensitivity of piezoelectric stack actuators", Sensors, 23, 9542. https://doi.org/10.3390/s23239542
- Liu, Y. (2023), "Advance piezo-actuator technologies for hard disk drive applications", Microsyst. Technol., 29, 1117-1127. https://doi.org/10.1007/s00542-023-05460-7
- Nanda, N. and Nath, Y. (2012), "Active control of delaminated composite shells with piezoelectric sensor/actuator patches", Struct. Eng. Mech., Int. J., 42(2), 211-228. https://doi.org.10.12989/sem.2012.42.2.211
- Qian, L., Li, Y., Sun, Q. and Ge, J.Y. (2022), "Dynamic characteristics study of PVDF shock sensor", Transd. Microsyst. Technol., 41(7), 33-37. https://doi.org.10.13873/J.1000-9787(2022)07-0033-04
- Rasid, S.M.R., Michael, A. and Pota, H.R. (2023), "Dynamic modeling of a piezoelectric micro-lens actuator with experimental validation", Sensors Actuators A: Phys., 356(16), 114344. https://doi.org/10.1016/j.sna.2023.114344
- Robinson, P., Vishwanath, K.H. and Ashwini, M.V. (2021), "A study on structural analysis of composite beam structure", Materials Today: Proceedings, 45, 434-439. https://doi.org/10.1016/J.MATPR.2020.12.1154
- Roy, I.D. and Eversman, W. (1996), "Adaptive flutter suppression of an unswept wing", J. Aircraft, 33(4), 775-783. https://doi.org/10.2514/3.47014
- Shami, Z.A., Giraud-Audine, C. and Thomas, O. (2022), "A nonlinear piezoelectric shunt absorber with a 2:1 internal resonance: Theory", Mech. Syst. Signal Process., 170, 108768. https://doi.org/10.1016/j.ymssp.2021.108768
- Sun, K., Wang, H.F., Li, M. and Cui, Y.L. (2017), "Analysis of electrical damping of piezoelectric bimorph actuator", J. Qingdao Univ. (Natural Science Ed.), 30(4), 84-88. https://doi.org.10.3969/j.issn.1006-1037.2014.11.16
- Versiani, T.D.S.S., Silvestre, F.J., Neto, A.B.G., Rade, D.A., da Silva, R.G.A., Donadon, M.V., Bertolin, R.M. and Silva, G.C. (2019), "Gust load alleviation in a flexible smart idealized wing", Aerosp. Sci. Technol., 86, 762-774. https://doi.org/10.1016/jast.2019.01.058
- Wang, B. (2018), "System reliability analysis of piezoelectric truss structures", Ph.D. Dissertation; Harbin Engineering University, Harbin, China.
- Wang, Y., Zhu, L. and Du, C. (2021), "Progress in piezoelectric nanogenerators based on PVDF composite films", Micromach., 12, 1278. https://doi.org/10.3390/mi12111278
- Wang, H., Li, Y., Hui, H. and Rong, T. (2022), "Analysis of electromechanical characteristics of the 1-3-2 piezoelectric composite and 1-3-2 modified structural material", Ceramics Int., 48, 22323-22334. https://doi.org.10.1016/j.ceramint.2022.04.238
- Weimann, T., Molter, A., Fernandez, L. and He, M. (2023), "Structural vibration control based on the effect of acoustic black holes and piezoelectric actuators", Finite Elem. Anal. Des., 224(15), 103992. https://doi.org/10.1016/j.finel.2023.103992
- Wu, Y., Ma, Y., Zheng, H. and Ramakrishna, S. (2021), "Piezoelectric materials for flexible and wearable electronics: A review", Mater. Des., 211, 110164. https://doi.org/10.1016/j.matdes.2021.110164
- Xu, L., Li, H. and Li, C. (2016), "Displacements of the flexible ring for an electromechanical integrated harmonic piezodrive system", Struct. Eng. Mech., Int. J., 60(6), 1079-1092. https://doi.org.10.12989/sem.2016.60.6.1079
- Zhang, X., Chen, L. Wang, L. and She, X. (2022), "Power output characteristics analysis of multilayer PVDF stacked piezoelectric cantilever beam", J. Vib. Shock, 41(5), 217-224. https://doi.org.10.13465./j.cnki.jvs.2022.15.028
- Zhou, M.R., Zhou, Z.H., Liu, X., Cao, T.S. and Li, Z.H. (2023), "Improved Bouc-Wen model of piezoelectric actuator and its positioning compensation control study", J. Vib. Shock, 42(10), 155-164. https://doi.org.10.13465/j.cnki.jvs.2023.10.019