• Title/Summary/Keyword: Nonporous

Search Result 42, Processing Time 0.023 seconds

Surface Characteristics and Fibroblast Adhesion Behavior of RGD-Immobilized Biodegradable PLLA Films

  • Jung Hyun Jung;Ahn Kwang-Duk;Han Dong Keun;Ahn Dong-June
    • Macromolecular Research
    • /
    • v.13 no.5
    • /
    • pp.446-452
    • /
    • 2005
  • The interactions between the surface of scaffolds and specific cells play an important role in tissue engineering applications. Some cell adhesive ligand peptides including Arg-Gly-Asp (RGD) have been grafted into polymeric scaffolds to improve specific cell attachment. In order to make cell adhesive scaffolds for tissue regeneration, biodegradable nonporous poly(L-lactic acid) (PLLA) films were prepared by using a solvent casting technique with chloroform. The hydrophobic PLLA films were surface-modified by Argon plasma treatment and in situ direct acrylic acid (AA) grafting to get hydrophilic PLLA-g-PAA. The obtained carboxylic groups of PLLA-g-PAA were coupled with the amine groups of Gly-Arg-Asp-Gly (GRDG, control) and GRGD as a ligand peptide to get PLLA-g-GRDG and PLLA-g-GRGD, respectively. The surface properties of the modified PLLA films were examined by various surface analyses. The surface structures of the PLLA films were confirmed by ATR-FTIR and ESCA, whereas the immobilized amounts of the ligand peptides were 138-145 pmol/$cm^2$. The PLLA surfaces were more hydrophilic after AA and/or RGD grafting but their surface morphologies showed still relatively smoothness. Fibroblast adhesion to the PLLA surfaces was improved in the order of PLLA control

Treatment Characteristics of Acid Mine Drainage by Porous Ceramics using Wood Flour as Pore-forming Agent (목분 기포제를 이용한 산업부산물 소재 다공성 세라믹에 의한 산성광산배수의 처리특성 연구)

  • Lee, Yeong-Nam;Yim, Soo-Bin
    • Journal of Environmental Science International
    • /
    • v.27 no.2
    • /
    • pp.109-122
    • /
    • 2018
  • This study was conducted to investigate the removal characteristics of heavy metals and sulfate ion from acid mine drainage by porous zeolite-slag ceramics (ZS ceramics) that was prepared by adding wood flour as pore-foaming agent while calcining the mixtures of natural zeolite and converter slag. The batch test showed that the removal efficiency of heavy metals by pellet-type porous ZS ceramics increased as the particle size of wood flour was decreased and as the weight mixing ratio of wood flour to ZS ceramics was increased. The optimal particle size and weight mixing ratio of wood flour were measured to be $75{\mu}m$ and 7~10%, respectively. The removal test with the porous ZS ceramics prepared in these optimal condition showed very high removal efficiencies: more than 98.4% for all heavy metals and 73.9% for sulfate ion. Relative to nonporous ZS ceramics, the increment of removal efficiency of heavy metals by porous ZS ceramics with $75{\mu}m$ and 10% wood flour was 5.8%, 60.5%, 36.9%, 87.7%, 10.3%, and 57.4% for Al, Cd, Cu, Mn, Pb, and Zn, respectively. The mechanism analysis of removal by the porous ZS ceramics suggested that the heavy metals and sulfate ion from acid mine drainage are eliminated by multiple reactions such as adsorption and/or ion exchange as well as precipitation and/or co-precipitation.

Effects of Planting Time and Mulching Materials on Growth Characteristics and Yield in Cassia tora L. (결명(決明)의 파종기(播種期)와 피복재료(被覆材料)가 생육(生育) 및 수량(收量)에 미치는 영향(影響))

  • Lee, He-Duck;Kim, Chang-Yeong;Rho, Tae-Hong;Lee, Jong-Chul
    • Korean Journal of Medicinal Crop Science
    • /
    • v.1 no.2
    • /
    • pp.158-161
    • /
    • 1993
  • This experiments were carried out determine planting date for highest Yields and select an covering material for enhancement of environments in Cassia tora L.The highest Yields by regressions estimate produced 352 kg/10a at May 18. of coure, it is possible to plant at June and early-July in spite of slight decreas of Yields, therefore Cassia tora L. is benefit to establish cropping system with barley, wheat or other crops. The covering materials for highest yielding was Black-white nonporous PE(low density) and it out yielded about 53% than conventional cultivations. Cassia tora L. is possible to produce Without agricultural medicines because of little occurence of decrease except occuring of Damping off(Rhizoctonia solanikuhn) at early planting.

  • PDF

Detailed patterning formation through Etch resist printing condition reservation (부식 방지막 인쇄 조건 확보를 통한 미세 배선 형성)

  • Lee, Ro-Woon;Park, Jae-Chan;Kim, Yong-Sik;Kim, Tae-Gu;Joung, Jae-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.179-179
    • /
    • 2006
  • 산업기술의 고도화에 따른 IT 산업의 급속한 발전으로 각종 전자, 정보통신기기에 대해 더욱 소형화 고성능화를 요구하고 있다. 이와 같은 경향에 따라 더욱 향상된 기능을 가지고 각종 소자 부품의 개발과 동시에 유독 물질 발생이 없는 청정생산기술 개발에 대한 요구가 끊임없이 제기 되어 왔다. 이러한 요구에 부응하여 기술들이 개발되고 있으며 그 중의 하나로 잉크젯 프린팅 기술이 연구되고 있다. 특히 Dod(Drop on Demand) 방식의 잉크젯은 가정용 프린터로 개발되어 널리 보급된 기술이지만, 이 기술을 PCB 제조기술에 전용하면 친환경 생산공정으로 부품 성장밀도를 증대 시킬 수 있다. 기존의 PCB 제조기술은 전극과 신호 패턴을 형성시키기 위하여 노광공정과 에칭공정을 반복적으로 사용하고 있는데, 노광공정에서 쓰이는 마스크와 유틸리티 설비 유지 비용의 문제가 대두되고 있다. 노즐로부터 분사된 잉크 액적들의 집합으로 기판위에 점/선/면의 인쇄이미지를 구현하게 된다. 그러므로 인쇄 해상도는 잉크액적 및 인쇄 방법, 기판과의 상호작용에 크게 의존하게 된다. 잉크 액적과 기판의 상호작용에 영향을 미치는 요소로는 잉크의 물리화학적 물성(밀도, 점도, 표면장력), 잉크 액적의 충돌 조건(액적 지름, 부피, 속도), 그리고 기판의 특성(친수/소수성, Porous/Nonporous, 표면조도 등)을 들 수 있겠다. 우선적으로 노즐을 통과해서 분사되는 액적의 크기에 따라 기판위에 형성되는 라인의 두께 및 폭이 결정된다. 떨어진 액적이 기판위에서 퍼지는 것을 UV 조사를 통한 가경화 과정을 통해서 최종적으로 라인의 투께 및 폭을 조절하려고 한다. 따라서 선폭 $75{\mu}m$의 일정한 미세 배선을 형성시키기 위해 액적 크기 조절과 탄착 resist 액적 표면의 UV 가경화 조건으로 구현하려고 한다. 또한 DPI(Dot Per Inch) 조절을 통한 인쇄로 탄착 resist의 두께 확보 후 에칭시 박리되는 현상을 억제 시키려 한다.

  • PDF

Surface Modification and Fibrovascular Ingrowth of Porous Polyethylene Anophthalmic Implants

  • Yang, Hee-Seok;Park, Kwi-Deok;Son, Jun-Sik;Kim, Jae-Jin;Han, Dong-Keun;Park, Byung-Woo;Baek, Se-Hyun
    • Macromolecular Research
    • /
    • v.15 no.3
    • /
    • pp.256-262
    • /
    • 2007
  • The purpose of this study was to determine the effect of surface modification on the fibrovascular ingrowth into porous polyethylene (PE) spheres ($Medpor^{(R)}$), which are used as an anophthalmic socket implant material. To make the inert, hydrophobic PE surface hydrophilic, nonporous PE film and porous PE spheres were subjected to plasma treatment and in situ acrylic acid (AA) grafting followed by the immobilization of arginine-glycine-aspartic acid (RGD) peptide. The surface-modified PE was evaluated by performing surface analyses and tested for fibroblast adhesion and proliferation in vitro. In addition, the porous PE implants were inserted for up to 3 weeks in the abdominal area of rabbits and, after their retrieval, the level of fibrovascular ingrowth within the implants was assessed in vivo. As compared to the unmodified PE control, a significant increase in the hydrophilicity of both the AA-grafted (PE-g-PAA) and RGD-immobilized PE (PE-g-RGD) was observed by the measurement of the water contact angle. The cell adhesion at 72 h was most notable in the PE-g-RGD, followed by the PE-g-PAA and PE control. There was no significant difference between the two modified surfaces. When the cross-sectional area of tissue ingrowth in vivo was evaluated, the area of fibrovascularization was the largest with PE-g-RGD. The results of immunostaining of CD31, which is indicative of the degree of vascularization, showed that the RGD-immobilized surface could elicit more widespread fibrovascularization within the porous PE implants. This work demonstrates that the present surface modifications, viz. hydrophilic AA grafting and RGD peptide immobilization, can be very effective in inducing fibrovascular ingrowth into porous PE implants.

Tutorial Review on Membrane Classification and Preparation Methods (멤브레인 분류 및 제조 방법에 대한 튜토리얼 총설)

  • Moon, Seung Jae;Kim, Young Jun;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.32 no.3
    • /
    • pp.198-208
    • /
    • 2022
  • Membrane can selectively separate various substances such as organic substances, liquids, solutes, vapors, gases, ions or electrons according to the separation technology and various uses. Membranes are largely divided into symmetric membranes and asymmetric membranes, and classified into porous and nonporous structure depending on the presence or absence of pores. Also, the interface of the membrane may be molecularly uniform, or chemically or physically non-uniform. Preparation techniques include melt extrusion, stretching, template leaching, track-etching, solution casting, phase inversion, and solution coating method. The prepared membrane can be applied to various applications such as microfiltration, ultrafiltration, nanofiltration, reverse osmosis, gas separation and energy fields. This review provides a tutorial on how to prepare membranes according to the classification and types.

Adsorptive Removal of Cu(II), Pb(II), and Hg(II) Ions from Common Surface Water Using Cellulose Fiber-Based Filter Media

  • Phani Brahma Somayajulu Rallapalli;Jeong Hyub Ha
    • Applied Chemistry for Engineering
    • /
    • v.35 no.4
    • /
    • pp.352-359
    • /
    • 2024
  • Environmental pollution from heavy metal ions (HMIs) is a global concern. Recently, biosorption methods using cellulose sorbents have gained popularity. The objective of this study was to assess the removal efficiency of Cu(II), Pb(II), and Hg(II) ions at low concentration levels (100-700 ppb) from aqueous solutions using three different cellulose fiber-based filter media. Sample A was pure cellulose fiber, Sample B was 10% activated carbon-cellulose fiber, and Sample C was cellulose fiber-glass fiber-30% activated carbon-20% amorphous titanium silicate (ATS). The samples were characterized by several physicochemical techniques. The porosity measurements using N2 sorption isotherms revealed that Samples A and B are nonporous or macroporous materials, whereas the addition of 50% filler materials into the cellulose resulted in a microporous material. The Brunauer-Emmett-Teller (BET) surface area and pore volume of Sample C were found to be 320.34 m2/g and 0.162 cm3/g, respectively. The single ion batch adsorption experiments reveal that at 700 ppb initial metal ion concentration, Sample A had removal efficiencies of 7.5, 11.5, and 13.7% for Cu(II), Pb(II), and Hg(II) ions, respectively. Sample B effectively eliminated 99.6% of Cu(II) ions compared to Pb(II) (14.2%) and Hg(II) (31.9%) ions. Cu(II) (99.37%) and Pb(II) (96.3%) ions are more efficiently removed by Sample C than Hg(II) (68.2%) ions. The X-ray photoelectron spectroscopy (XPS) wild survey spectrum revealed the presence of Cu(II), Pb(II), and Hg(II) ions in HMI-adsorbed filter media. The high-resolution C1s spectra of Samples A and B reveal the presence of -C-OH and -COOH groups on their surface, which are essential for HMIs adsorption via complexation reactions. Additionally, the ATS in Sample C facilitates the adsorption of Pb(II) and Hg(II) ions through ion exchange.

Electrolytic Reduction of 1 kg-UO2 in Li2O-LiCl Molten Salt using Porous Anode Shroud (Li2O-LiCl 용융염에서의 다공성 양극 슈라우드를 이용한1kg 우라늄산화물의 전해환원)

  • Choi, Eun-Young;Lee, Jeong;Jeon, Min Ku;Lee, Sang-Kwon;Kim, Sung-Wook;Jeon, Sang-Chae;Lee, Ju Ho;Hur, Jin-Mok
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.3
    • /
    • pp.121-129
    • /
    • 2015
  • The platinum anode for the electrolytic reduction process is generally surrounded by a nonporous ceramic shroud with an open bottom to offer a path for $O_2$ gas produced on the anode surface and prevent the corrosion of the electrolytic reducer. However, the $O^{2-}$ ions generated from the cathode are transported only in a limited fashion through the open bottom of the anode shroud because the nonporous shroud hinders the transport of the $O^{2-}$ ions to the anode surface, which leads to a decrease in the current density and an increase in the operation time of the process. In the present study, we demonstrate the electrolytic reduction of 1 kg-uranium oxide ($UO_2$) using the porous shroud to investigate its long-term stability. The $UO_2$ with the size of 1~4mm and the density of $10.30{\sim}10.41g/cm^3$ was used for the cathode. The platinum and 5-layer STS mesh were used for the anode and its shroud, respectively. After the termination of the electrolytic reduction run in 1.5 wt.% $Li_2O-LiCl$ molten salt, it was revealed that the U metal was successfully converted from the $UO_2$ and the anode and its shroud were used without any significant damage.

Modeling of thermal fluidized desorption for diesel-oil contaminated soils (Diesel-oil에 오염된 토양의 유동상 열탈착 모델링)

  • 이상화;김병욱;이상득;박달근;이중기
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.2
    • /
    • pp.137-147
    • /
    • 1999
  • Fluidized-bed thermal desorber coupled with a heat pipe was investigated for the remediation of soil contaminated with diesel oils. Thermal gravimetric analysis by Cahn-balance indicated that the desorption of diesel oils from the soil particles was mainly governed by the internal diffusion at low concentration of less than 0.5 wt. % of oils in the soil particles. In fluidized-bed experiments. increase of fluidizing gas velocity reduced the residual oils of the contaminated soils, the increase of soil feed rate decreased efficiency of fluidized-bed desorber. A mathematical model was developed by incorporating Fickian diffusion kinetics into the Kunii-Levenspiel model Simulation results showed reasonable agreement for the performance of fluidized-bed thermal desorber.

  • PDF

Development of U-shaped Arterialvenous Shunt Using Porous Polyurethane (다공성 폴리우레탄을 이용한 동정맥 누관의 개발)

  • 정재승;김희찬;박광석;최진욱;민병구
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.2
    • /
    • pp.221-230
    • /
    • 1999
  • A new technique for the preparation of porous polyurethane vascular prostheses was investigated. Synthetic vascular grafts with porous wall have been widely proposed, claiming that strength, suture retention, kink resistance, and other handling properties are improved over those with nonporous solid wall. Related to these facts, the control of pores and compliance match have been very important and interesting issues. Two kinds of polymer sheets were compared. One was the porous PU-sheet made at room temerature by the solvent/non-solvent exchange. And the other was the porous PU-sheet fabricated by thermal phase transition and solvent/non-solvent exchange in the thermal controlled bath. According to the result of the above experiments, polyurethane solution was injected into a mold designed for U-type graft. After freezing at low temperature, solvent was dissolved out with alcohol at < $0^{\circ}C$ and water at room temperature to form porous vessels. The average pore size and pore occupation were easily changed by changing polyurethane concentration and freezing rate. This technique can give a proper pore size for tissue ingrowth, and suitable compliances for matching with arteries and veins. In addition, the fabrication of more complicated shaped vessels such as the U-type vascular grafts is easily controlled by using a mold. This method might give a desired compliact graft for artificial implantaion with the commercially available medical polymers.

  • PDF