• Title/Summary/Keyword: Nonparametric method

Search Result 345, Processing Time 0.025 seconds

On Practical Choice of Smoothing Parameter in Nonparametric Classification (베이즈 리스크를 이용한 커널형 분류에서 평활모수의 선택)

  • Kim, Rae-Sang;Kang, Kee-Hoon
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.2
    • /
    • pp.283-292
    • /
    • 2008
  • Smoothing parameter or bandwidth plays a key role in nonparametric classification based on kernel density estimation. We consider choosing smoothing parameter in nonparametric classification, which optimize the Bayes risk. Hall and Kang (2005) clarified the theoretical properties of smoothing parameter in terms of minimizing Bayes risk and derived the optimal order of it. Bootstrap method was used in their exploring numerical properties. We compare cross-validation and bootstrap method numerically in terms of optimal order of bandwidth. Effects on misclassification rate are also examined. We confirm that bootstrap method is superior to cross-validation in both cases.

Nonparametric Method for Ordered Alternative in Randomized Block Design (랜덤화 블록 계획법에서 순서대립가설에 대한 비모수검정법)

  • Kang, Yuhyang;Kim, Dongjae
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.1
    • /
    • pp.61-70
    • /
    • 2014
  • A randomized block design is a method to apply a treatment into the experimental unit of each block after dividing into several blocks with a binded homogeneous experimental unit. Jonckheere (1964) and Terpstra (1952), Page (1963), Hollander (1967) proposed various methods of ordered alternative in randomized block design. Especially, Page (1963) test is a weighted combination of within block rank sums for ordered alternatives. In this paper, we suggest a new nonparametric method expanding the Page test for an ordered alternative. A Monte Carlo simulation study is also adapted to compare the power of the proposed methods with previous methods.

Nonparametric Method in One-way Layout for Umbrella Alternatives based on Placement (일원배치법에서 Umbrella Alternatives에 대한 위치를 이용한 비모수 검정법)

  • Lee, Hyejung;Kim, Dongjae
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.6
    • /
    • pp.1181-1189
    • /
    • 2015
  • The treatment effect in clinical tests depending on dose of the drug; however, it can show a decreasing trend in fixed dose level due to side effects. The trend is known as an umbrella pattern; in addition, the method for the umbrella alternative is quite useful when the tendency is predicted in advance. In this paper, we propose a nonparametric method of umbrella alternatives for a one-way layout by using linear placement described in Orban and Wolfe (1982). The Monte Carlo simulation is adapted to compare the power of proposed procedure with previous methods.

Study on Variability of WTP Estimates by the Estimation Methods using Dichotomous Choice Contingent Valuation Data (양분선택형 조건부가치측정(CV) 자료의 추정방법에 따른 지불의사금액의 변동성 연구)

  • Shin, Youngchul
    • Environmental and Resource Economics Review
    • /
    • v.25 no.1
    • /
    • pp.1-25
    • /
    • 2016
  • This study investigated the variability of WTP estimates(i.e. mean or median) with ad hoc assumptions of specific parametric probability distributions(i.e. normal, logistic, lognormal, and exponential distribution) to estimate WTP function using dichotomous choice CV data on mortality risk reduction. From the perspective of policy decision, the variability of these WTP estimates are intolerable in comparison with those of Turnbull nonparametric estimation method which is free from ad hoc distribution assumptions. The Turnbull nonparametric estimation can avoid a kind of misspecification bias due to ad hoc assumption of specific parametric distributions. Furthermore, the WTP estimates by Turnbull nonparametric estimation are robust because the similar estimates are elicited from a dichotomous choice or double dichotomous choice CV data, and the statistically significant WTP estimates can be obtained even though it is not possible by parametric estimation methods. If there are considerable variability among those WTP estimates by parametric estimation methods in condition with no criteria of model adequacy, the mean WTPs from Turnbull nonparametric estimation can be the robust estimates without ad hoc assumptions, which can avoid controversial issues in the perspective of policy decisions.

Additive Regression Models for Censored Data (중도절단된 자료에 대한 가법회귀모형)

  • Kim, Chul-Ki
    • Journal of Korean Society for Quality Management
    • /
    • v.24 no.1
    • /
    • pp.32-43
    • /
    • 1996
  • In this paper we develop nonparametric methods for regression analysis when the response variable is subject to censoring that arises naturally in quality engineering. This development is based on a general missing information principle that enables us to apply, via an iterative scheme, nonparametric regression techniques for complete data to iteratively reconstructed data from a given sample with censored observations. In particular, additive regression models are extended to right-censored data. This nonparametric regression method is applied to a simulated data set and the estimated smooth functions provide insights into the relationship between failure time and explanatory variables in the data.

  • PDF

PRELIMINARY DETECTION FOR ARCH-TYPE HETEROSCEDASTICITY IN A NONPARAMETRIC TIME SERIES REGRESSION MODEL

  • HWANG S. Y.;PARK CHEOLYONG;KIM TAE YOON;PARK BYEONG U.;LEE Y. K.
    • Journal of the Korean Statistical Society
    • /
    • v.34 no.2
    • /
    • pp.161-172
    • /
    • 2005
  • In this paper a nonparametric method is proposed for detecting conditionally heteroscedastic errors in a nonparametric time series regression model where the observation points are equally spaced on [0,1]. It turns out that the first-order sample autocorrelation of the squared residuals from the kernel regression estimates provides essential information. Illustrative simulation study is presented for diverse errors such as ARCH(1), GARCH(1,1) and threshold-ARCH(1) models.

Nonparametric test procedure for the bivariate changepoint (이변량 변화시점모형에 대한 비모수적인 검정법)

  • 김경무
    • The Korean Journal of Applied Statistics
    • /
    • v.7 no.1
    • /
    • pp.35-46
    • /
    • 1994
  • We propose the nonparametric rank-like test for the location parameter in the bivariate changepoint model. Empirical powers between the parametric test and nonparametric test are compared. These results show that rank-like test is better than parametric method except bivariate normal null distribution. The point estimators for the changepoint are also compared by the empirical mean squared errors.

  • PDF

Nonparametric procedures using placement in randomized block design with replications (반복이 있는 랜덤화 블록 계획법의 위치를 이용한 비모수 검정법)

  • Lee, Sang-Yi;Kim, Dong-Jae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.6
    • /
    • pp.1105-1112
    • /
    • 2011
  • Mack (1981), Skilling and Wolfe (1977, 1978) proposed typical nonparametric method in randomized block design with replications. In this paper, we proposed the procedures based on placement as extension of the two sample placement tests described in Orban and Wolfe (1982) and treatment versus control tests described in Kim (1999). Also Monte Carlo simulation study is adapted to compare power of the proposed procedure with those of previous procedures.

Nonparametric Bayesian estimation on the exponentiated inverse Weibull distribution with record values

  • Seo, Jung In;Kim, Yongku
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.3
    • /
    • pp.611-622
    • /
    • 2014
  • The inverse Weibull distribution (IWD) is the complementary Weibull distribution and plays an important role in many application areas. In Bayesian analysis, Soland's method can be considered to avoid computational complexities. One limitation of this approach is that parameters of interest are restricted to a finite number of values. This paper introduce nonparametric Bayesian estimator in the context of record statistics values from the exponentiated inverse Weibull distribution (EIWD). In stead of Soland's conjugate piror, stick-breaking prior is considered and the corresponding Bayesian estimators under the squared error loss function (quadratic loss) and LINEX loss function are obtained and compared with other estimators. The results may be of interest especially when only record values are stored.

Nonparametric Estimation of Univariate Binary Regression Function

  • Jung, Shin Ae;Kang, Kee-Hoon
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.236-241
    • /
    • 2022
  • We consider methods of estimating a binary regression function using a nonparametric kernel estimation when there is only one covariate. For this, the Nadaraya-Watson estimation method using single and double bandwidths are used. For choosing a proper smoothing amount, the cross-validation and plug-in methods are compared. In the real data analysis for case study, German credit data and heart disease data are used. We examine whether the nonparametric estimation for binary regression function is successful with the smoothing parameter using the above two approaches, and the performance is compared.