• 제목/요약/키워드: Nonlinear robust control

검색결과 699건 처리시간 0.021초

부정합조건 불확실성과 외란을 갖는 비선형 시스템을 위한 비선형 적분형 슬라이딩 면을 갖는 새로운 강인한 가변구조제어기 (A New Robust Variable Structure Controller With Nonlinear Integral-Type Sliding Surface for Uncertain More Affine Nonlinear Systems with Mismatched Uncertainties and Disturbance)

  • 이정훈
    • 전기학회논문지
    • /
    • 제59권7호
    • /
    • pp.1295-1301
    • /
    • 2010
  • In this note, a systematic general design of a new robust nonlinear variable structure controller based on state dependent nonlinear form is presented for the control of uncertain affine nonlinear systems with mismatched uncertainties and mismatched disturbance. After an affine uncertain nonlinear system is represented in the form of state dependent nonlinear system, a systematic design of a new robust nonlinear variable structure controller is presented. To be linear in the closed loop resultant dynamics, the nonlinear integral-type sliding surface is applied. A corresponding control input is proposed to satisfy the closed loop exponential stability and the existence condition of the sliding mode on the nonlinear integral-type sliding surface, which will be investigated in Theorem 1. Through a design example and simulation studies, the usefulness of the proposed controller is verified.

다변수 슬라이딩 모드 제어에 의한 부정합조건 불확실성을 갖는 다입출력 비선형 시스템의 강인그로벌 지수 안정화 (A Robust Global Exponential Stabilization of Uncertain Affine MIMO Nonlinear Systems with Mismatched Uncertainties by Multivariable Sliding Mode Control)

  • 이정훈
    • 전기학회논문지
    • /
    • 제60권9호
    • /
    • pp.1754-1760
    • /
    • 2011
  • In this paper, a systematic design of a robust nonlinear multivariable variable structure controller based on state dependent nonlinear form is presented for the control of MIMO uncertain affine nonlinear systems with mismatched uncertainties and matched disturbance. After a MIMO uncertain affine nonlinear system is represented in the form of state dependent nonlinear system, a systematic design of a robust nonlinear variable structure controller is presented. To be linear in the closed loop resultant dynamics, the linear sliding surface is applied. A corresponding diagonalized control input is proposed to satisfy the closed loop global exponential stability and the existence condition of the sliding mode on the linear sliding surface, which will be investigated in Theorem 1. Through a design example and simulation study, the usefulness of the proposed controller is verified.

Nonlinear Modification Scheme for Reducing Cautiousness of Linear Robust Control

  • Maki, Midori;Hagino, Kojiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1999년도 제14차 학술회의논문집
    • /
    • pp.108-111
    • /
    • 1999
  • In this paper, we develope a composite control law for linear systems with norm-bounded time-varying parameter uncertainties, which consists of a basic linear robust control do-signed so as to generate a desired transient time-response for the worst-case parameter variation and a nonlinear modification term designed so as to reduce cautiousness of the linear robust control in an adaptive manner. The proposed controller is established such that the reduction of cautiousness of the linear robust control is well incorporated into the achievement of a good transient behavior.

  • PDF

Inversion-Based Robust Output Tracking of Differentially Flat Nonlinear Systems

  • Joo, Jin-Man;Park, in-Bae;Park, Yoon-Ho
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제3권1호
    • /
    • pp.21-26
    • /
    • 2001
  • In this study, we propose a two degree of freedom robust output tracking control method for a class of nonlinear system. We consider hyperbolically nonminimum phase single-input single-output uncertain nonlinear systems. We also consider the case that the nominal input-state equation is differentially flat. Nominal stable state trajectory is obtained in the flat output space via the flat output. Nominal feedforward control input is also computed from the nominal state trajectory. Due to the nature of the method, the generated flat output trajectory and control input are noncausal. Robust feedback control is designed to stabilize the systems around the nominal trajectory. A numerical example is given is given to demonstrate that robust tracking is achieved.

  • PDF

병렬형 역진자와 비선형 $H_2$/H_{\infty}강인제어 (Robust Nonlinear $H_2$/$H_{\infty}$Control for a Parallel Inverted Pendulum)

  • 한성익;김종식
    • 대한기계학회논문집A
    • /
    • 제24권4호
    • /
    • pp.1065-1074
    • /
    • 2000
  • A robust nonlinear $H_2$/$H_{\infty}$ control method for a parallel inverted pendulum with structured perturbation and dry friction is proposed. By the random input describing function techniques, the nonlinear dry friction is approximated into the quasi-linear system. Introducing the quadratic robustness theorem, the robust $H_2$/$H_{\infty}$ control system is constructed for the quasi-linear perturbed system. But it is difficult to design a controller due to the nonlinear correction term in Riccati equation. With some transformations on the Riccati equation containing nonlinear correction term, the design of the robust nonlinear controller can be done easily. Hence when the stiffness and mass of the parallel inverted pendulum vary in certain ranges, the proposed control scheme has the robustness for both the structured perturbation and dry friction. The results of computer simulation show the effectiveness of our proposed control method.

Development of a Robust Nonlinear Prediction-Type Controller

  • Park, Ghee-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.445-450
    • /
    • 1998
  • In this paper, a robust nonlinear prediction-type controller (RNPC) is developed for the continuous time nonlinear system whose control objective is composed of system output and its desired value. The basic control law of RNPC is derived such that the future response of the system is first predicted by appropriate functional expansions and the control law minimizing the difference between the predicted and desired responses is then calculated. RNPC which involves two controls, i.e., the auxiliary and robust controls into the basic control, shows the stable closed loop dynamics of nonlinear system of any relative degree and provides the robustness to the nonlinear system with parameter/modeling uncertainty. Simulation tests for the position control of a two-link rigid body manipulator confirm the performance improvement and the robustness of RNPC.

  • PDF

부정합조건 불확실성을 갖는 비선형 시스템을 위한 새로운 강인한 적분 가변 구조 제어기 (A New Robust Integral Variable Structure Controller for Uncertain More Affine Nonlinear Systems with Mismatched Uncertainties)

  • 이정훈
    • 전기학회논문지
    • /
    • 제59권6호
    • /
    • pp.1173-1178
    • /
    • 2010
  • In this note, a systematic design of a new robust nonlinear integral variable structure controller based on state dependent nonlinear form is presented for the control of uncertain more affine nonlinear systems with mismatched uncertainties and matched disturbance. After an affine uncertain nonlinear system is represented in the form of state dependent nonlinear system, a systematic design of a new robust nonlinear integral variable structure controller is presented. To be linear in the closed loop resultant dynamics and remove the reaching phase problems, the linear integral sliding surface is suggested. A corresponding control input is proposed to satisfy the closed loop exponential stability and the existence condition of the sliding mode on the linear integral sliding surface, which will be investigated in Theorem 1. Through a design example and simulation studies, the usefulness of the proposed controller is verified.

부정합조건 불확실성을 갖는 비선형 시스템을 위한 새로운 강인한 가변구조제어기 (A New Robust Variable Structure Controller for Uncertain Affine Nonlinear Systems with Mismatched Uncertainties)

  • 이정훈
    • 전기학회논문지
    • /
    • 제59권5호
    • /
    • pp.945-949
    • /
    • 2010
  • In this paper, a systematic design of a new robust nonlinear variable structure controller based on state dependent nonlinear form is presented for the control of uncertain affine nonlinear systems with mismatched uncertainties and matched disturbance. After an affine uncertain nonlinear system is represented in the form of state dependent nonlinear system, a systematic design of a new robust nonlinear variable structure controller is presented. To be linear in the closed loop resultant dynamics, the linear sliding surface is applied. A corresponding control input is proposed to satisfy the closed loop exponential stability and the existence condition of the sliding mode on the linear sliding surface, which will be investigated in Theorem 1. Through a design example and simulation study, the usefulness of the proposed controller is verified.

Dynamic Inversion과 PI 제어를 이용한 견실한 유도탄 오토파일롯 설계 (Robust Missile Autopilot Design using Dynamic Inversion and PI Control)

  • 조성진
    • 한국군사과학기술학회지
    • /
    • 제10권2호
    • /
    • pp.53-60
    • /
    • 2007
  • This paper presents a robust nonlinear autopilot design method based on dynamic inversion and PI(Proportional-Integral) control law. The new controller structure which is different from previous work is composed of classical linear PI control law and nonlinear fast dynamic inversion. A pitch axis model of highly maneuverable missiles and a linearized model for designing Pl controller are presented. The performance of proposed method is illustrated via nonlinear simulations including aerodynamic uncertainties and actuator dynamics.

볼록 계수화법에 의해 설계된 견실한 H_$\infty$제어기의 비선형 보일러 시스템에 대한 적용 (Robust H_$\infty$ controller based on convex parametrization with application to nonlinear boiler system)

  • 황준하;최광진;권오규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1456-1459
    • /
    • 1997
  • In this paper, a control system using robust H.inf. controller based on convex parametrization is presented for nonlinear system with uncertainty. accounting for the time delay, noise and linearization error by frequency analysis, the suboptmal controller is designed to meet robust stability and performance for uncertainty. The desinged control system is applied to a nonlimear boiler moderl to test its performances.

  • PDF