• 제목/요약/키워드: Nonlinear partial differential equation

검색결과 108건 처리시간 0.028초

비선형 관측기에 의한 유도전동기 간접 벡터제어 (Indirect Vector Control of Induction Motor using Nonlinear Observer)

  • 정삼용;이진섭;서진연;김동휘;최연옥;조금배
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 전력전자학술대회 논문집
    • /
    • pp.366-370
    • /
    • 1998
  • Indirect vector control for induction motors requires the use of observers for estimation or observation of rotor flux magnitude and position. In this paper, authors discribe the induction motor vector control and introduce a nonlinear observer, named ELO(extended Luenberger Observer), without simulation results as a preliminary work for trial application. Normally, design of nonlinear observer need coordinate transfromation and linearization through solving the partial different equation. However, ELO requires minimal solution of nonlinear partial differential equation. Simulation was performed by under the enviroment of Matlab and Simulink without the proposed observer because we are still working. Simulation was performed with conventional flux observer, a dc-ac inverter by SVPWM technique, a vector controller armed with multiple PI controllers

  • PDF

ON THE CONFORMAL DEFORMATION OVER WARPED PRODUCT MANIFOLDS

  • YOON-TAE JUNG;CHEOL GUEN SHIN
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제4권1호
    • /
    • pp.27-33
    • /
    • 1997
  • Let (M = B$\times$f F, g) be an ($n \geq3$ )-dimensional differential manifold with Riemannian metric g. We solve the following elliptic nonlinear partial differential equation (equation omitted). where $\Delta_{g}$ is the Laplacian in the $\Delta$g-metric and ($h(\chi)$) is the scalar curvature of g and ($H(\chi)$) is a function on M.

  • PDF

THE MULTISOLITON SOLUTION OF GENERALIZED BURGER'S EQUATION BY THE FORMAL LINEARIZATION METHOD

  • Mirzazadeh, Mohammad;Taghizadeh, Nasir
    • 대한수학회논문집
    • /
    • 제26권2호
    • /
    • pp.207-214
    • /
    • 2011
  • The formal linearization method is an efficient method for constructing multisoliton solution of some nonlinear partial differential equations. This method can be applied to nonintegrable equations as well as to integrable ones. In this paper, we obtain multisoliton solution of generalization Burger's equation and the (3+1)-dimension Burger's equation and the Boussinesq equation by the formal linearization method.

Necessary conditions in the optimal control of nonlinear integral equations

  • Wang, Fu-Yang;Lee, In-Beum;Chang, Kun-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.947-951
    • /
    • 1989
  • A Class of nonlinear distributed parameter control problems is first stated in a partial differential equation form in multi-index notion and then converted into an integral equation form. Necessary conditions for optimality in the form of maximum principle are then derived in Sobolev space W$^{l}$, p/(1 leq. p .leq. .inf.)..

  • PDF

A STUDY OF A WEAK SOLUTION OF A DIFFUSION PROBLEM FOR A TEMPORAL FRACTIONAL DIFFERENTIAL EQUATION

  • Anakira, Nidal;Chebana, Zinouba;Oussaeif, Taki-Eddine;Batiha, Iqbal M.;Ouannas, Adel
    • Nonlinear Functional Analysis and Applications
    • /
    • 제27권3호
    • /
    • pp.679-689
    • /
    • 2022
  • In this paper, we establish sufficient conditions for the existence and uniqueness of solution for a class of initial boundary value problems with Dirichlet condition in regard to a category of fractional-order partial differential equations. The results are established by a method based on the theorem of Lax Milligram.

EULER-MARUYAMA METHOD FOR SOME NONLINEAR STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS WITH JUMP-DIFFUSION

  • Ahmed, Hamdy M.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제18권1호
    • /
    • pp.43-50
    • /
    • 2014
  • In this paper we discussed Euler-Maruyama method for stochastic differential equations with jump diffusion. We give a convergence result for Euler-Maruyama where the coefficients of the stochastic differential equation are locally Lipschitz and the pth moments of the exact and numerical solution are bounded for some p > 2.

On the large amplitude free vibrations of axially loaded Euler-Bernoulli beams

  • Bayat, Mahmoud;Pakar, Iman;Bayat, Mahdi
    • Steel and Composite Structures
    • /
    • 제14권1호
    • /
    • pp.73-83
    • /
    • 2013
  • In this paper Hamiltonian Approach (HA) have been used to analysis the nonlinear free vibration of Simply-Supported (S-S) and for the Clamped-Clamped (C-C) Euler-Bernoulli beams fixed at one end subjected to the axial loads. First we used Galerkin's method to obtain an ordinary differential equation from the governing nonlinear partial differential equation. The effect of different parameter such as variation of amplitude to the obtained on the non-linear frequency is considered. Comparison of HA with Runge-Kutta 4th leads to highly accurate solutions. It is predicted that Hamiltonian Approach can be applied easily for nonlinear problems in engineering.

현수교 다리에서의 초기치 문제에 대한 역학적 운동 (Dynamics Oscillations in Suspension Bridges to Initial Conditions)

  • Hye-Young Oh
    • 한국컴퓨터산업학회논문지
    • /
    • 제3권5호
    • /
    • pp.569-574
    • /
    • 2002
  • 유계된 정의역에서 sine-Gordon 방정식인 현수교의 과격한 운동의 모델을 만든다. 유한 차분법을 이용하여 비선형 미분방정식을 수치 해석학적으로 풀다. 이 미분방정식은 다중 주기근을 가지고 있다. 다리가 큰 진폭이나 작은 진폭으로 진동하는 것은 초기의 변위와 속도에만 달려있다. 게다가, 많은 현상들이 Tacoma Narrows가 붕괴된 날에 관찰되는 것과 일치하고 있다.

  • PDF

Nonlinear buckling and free vibration of curved CNTs by doublet mechanics

  • Eltaher, Mohamed A.;Mohamed, Nazira;Mohamed, Salwa A.
    • Smart Structures and Systems
    • /
    • 제26권2호
    • /
    • pp.213-226
    • /
    • 2020
  • In this manuscript, static and dynamic behaviors of geometrically imperfect carbon nanotubes (CNTs) subject to different types of end conditions are investigated. The Doublet Mechanics (DM) theory, which is length scale dependent theory, is used in the analysis. The Euler-Bernoulli kinematic and nonlinear mid-plane stretching effect are considered through analysis. The governing equation of imperfect CNTs is a sixth order nonlinear integro-partial-differential equation. The buckling problem is discretized via the differential-integral-quadrature method (DIQM) and then it is solved using Newton's method. The equation of linear vibration problem is discretized using DIQM and then solved as a linear eigenvalue problem to get natural frequencies and corresponding mode shapes. The DIQM results are compared with analytical ones available in the literature and excellent agreement is obtained. The numerical results are depicted to illustrate the influence of length scale parameter, imperfection amplitude and shear foundation constant on critical buckling load, post-buckling configuration and linear vibration behavior. The current model is effective in designing of NEMS, nano-sensor and nano-actuator manufactured by CNTs.