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Dynamics Oscillations in Suspension Bridges to Initial Conditions
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ABSTRACT

We model the torsional oscillation of a suspension bridge, which is the forced sine-Gordon equation on a
bounded domain. We use finite difference method to solve nonlinear partial differential equation numerically.
The partial differential equation has multiple periodic solutions. Whether the span oscillates with small or large
amplitude depends only on its initial displacement and velocity. Moreover, we observe that the qualitative
properties are consistent with the behavior observed at the Tacoma Narrows Bridge on the day of its collapse.
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1. Introduction

The Tacoma Narrows Bridge collapsed in 1940.
There were the dramatic and destructive torsional
oscillations of the Bridge at that time. Many
scientists have tried to explain the cause of
oscillations for over fifty years. We argue that
nonlinear partial differential equations govern the
motion of suspension bridges and that inherent
nonlinearity  gives rise to large amplitude
oscillations. Theoretical and numerical evidence to
support this claim for the vertical, torsional, and
traveling wave motion of suspension bridges can be
found in [2],[4],[5],[6], and [7].
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We consider the entire length of the main span
of the suspension bridge. More concretely, we will
describe partial differential equation models for the
torsional and coupled vertical-torsional motions of
the center span. The equation which governs the
torsional motion is the forced sine-Gordon equation
on a bounded domain.

We use finite difference methods to compute
periodic solutions to the torsional PDE. As in [5],
we demonstrate that under small extemal forcing,
the center span may oscillate periodically with small
or large amplitude, depending only on its initial
displacement and velocity. Moreover, we observe
that the qualitative properties such as amplitude and
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frequency of computed solutions are consistent with
the behavior observed at the Tacoma Narrows
Bridge on the day of its collapse.

2. Description of a Horizontal Cross
Section of the Center Span

We will treat the center span of the bridge as a
beam of length L and width 2/ suspended by
cables. To model the motion of a horizontal cross
section of the beam, we treat it as a rod of length

2!/ and mass 1z suspended by cables. Let y(#)
denote the downward distance of the center of
gravity of the rod from the unloaded state and let

() denote the angle of the rod from horizontal
at time ¢ [Fig. 1].
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[Fig. 1] A Horizontal Cross Section of the Center Span

To model the torsional and vertical motion along
the entire length of the center span, we consider the
motion of the horizontal cross section located at

position x along the length of the span; thus y
and @ variables depend not only on time, but also
on the position along the length of the span. Let

y(x,t) denote the downward distance from the
unloaded state of the center of gravity of the cross

section located at position x at time ¢ and let
B(x, t) denote the angle of the cross section from
horizontal.

The extension of the cable is (y— /sin §) in
one side and (y+ /sin @) in the other, and the
force exerted by the cables is

—K(y— Isinf)* in  one side and

— K(y+ Isin@) " in the other. From [10] we
have that the vertical and torsional motion satisfy
the following equations,

0,— .6, = —% cos Al (y—Isin@) " —(y+Isind) ']

—8,60,+ Rx, 9
Vit eYm= — K[ (y—Isind) "+ (y+ Isin6) ']
— 0y, tg ¢))
800, D= (L, H=30,H=3(L,D=y_00,9
= y.(L,H=0.

Here, &, &5 are physical constants related to
the density and the shear modulus of elasticity of

the beam, &,, 8, are damping constants, A x,?)

is the external force, and g is the force due to
gravity. The boundary conditions reflect the fact that
the ends of the span are hinged.

Assuming that the cables never lose tension, we

have ytlsin =0 and hence

(yxlsinf) " = y+lsin§. The equations (1)
become uncoupled and the torsional and vertical
motion satisfy the following equations (2) and (3),
respectively.
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Op— €10, = % cos fsin 8 — 8,60,+ A x, D
600, n=6(L, H=0

Yt ezym,,:—-z;nliy— oy, tg 3)
0,0 =y(L,)=9,(0,)=y,(L,)=0

We observe that (2) is the forced, damped

sine-Gordon equation, which arises in many
applications. We approximate the periodic solutions

using finite difference methods.

3. Numerical Results

Based on the previous experience in [1],[5], and
[9], we expect to find interesting results. The
interesting solutions are investigated when sufficient
time has elapsed for the transient behaviors to have
disappeared. Ahead of the experiments, the
following section presents the physical constants and

external forcing.

3.1 The Choice of Physical Constants
and External Forcing

To determine the constants

K,m, l, L,(Sl, 82,81, €9,

forcing terms  A£) and Ax,f), we depend on
[1LI5L, and [9]. We
L =1000, /=6, m= 2500, 8, = 6,=0.01,

K=1000,&,=0.01, and &,=0.0001.

physical

and the external

choose

Then (2) becomes the following.

6,—€0,,+80,=—2.4cosfsin 8+ AR x, D
000, =6(1,D=0 4
x,0)=£&(x), 6,x,0)= 7(x)

Here, we choose &€= 6=1(.01 and external

forcing of the form

Ax, )= sin(ud
Ax,H=sin(¢dHsin (2mx)

or

Ax,H) = sin(xt)sin (xx).
3.2 The Experiments

We apply the finite difference schemes to
approximate solutions to the initial value problem

04— €0, +86,=—1.2sin20+ Afx,D
60, H=6(1,D=0 (5
6(x,0) = &(x), &x, 40 = ¢(x)

In each experiment, we use specify the initial
conditions &= &(x,), A= x),i=1, N—1.
We run the program for 400 periods of the forcing
term Afx, )= AsinufA(x), and examine the
behavior of solution over the last 30 of the 400
periods.

In each of the experiments, we use 520 time

steps per period of the forcing term, ie.,

2%
4= 500k

For the discussion which follows, we define

and we take Adx=10.025.

a = amplitude of the initial displacement ?‘

a,=amplitude of the resulting periodic

solution.
3.2.1 Forcing which depends on time only
We begin by examining the response of the main

span to small, time dependent forcing which is
constant along the length of the span, specifically

Afx, D = Asin uf
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and initial conditions of the form

0(x,0) = x, 4) = asin2nx.

Experiment 1. In this experiment, we use

A=0.04 and p=1.4.
la. We
6(x,0) = 6(x, 40) = 0.5sin2nx.

Despite the large initial displacement, we see in
[Fig. 2] that by periods 390 through 400 of the
forcing term, the span has settled down to
no-noded, periodic oscillation of small amplitude
(approximately 0.086 radians).

investigate  the  solution  when

1b. We solution  when

O(x,0) = 0(x, 4) = 0.6sin27x.
We have increased the amplitude
initial displacement only slightly different from 1a,
but we see in [Fig. 3] that this small change has a
dramatic impact on the motion of the span. As in
la, by periods 390 through 400 of the forcing term,
the span has settled down -to periodic oscillation.
But instead of settling to near equilibrium behavior,
as in la, the amplitude of the oscillation is
approximately 0.969 radians. This is close to the
amplitude observed at the Tacoma Narrows Bridge

on the day of the collapse, [1].

investigate  the

a of the

b=t ’ % = pasition slong tentor spar
[Fig. 2] Experiment la: A small amplitude solution at
A=0.04, £=1.4. In all figures from [Fig. 2] to [Fig.

5], the x, y, and 2 axis represent t=time, x=position

along center span, and &(xt), respectively.

[Fig. 3] Experiment 1b: A large amplitude periodic
solution at A=0.04, £=1.4.

3.2.2 One-noded forcing and initial conditions

The most prevalent motion observed at Tacoma
Narrows was one-noded (no displacement at the
center of the span) [1], so let us consider external

forcing of the form

AR x, £) = Asin ptsin2mx
and initial conditions of the form
&(x,0)= 6(x, 4) = asin27nx.

Experiment 2. In this experiment, we use
A=0.06 and p=1.4.

2a. We investigate the
6(x,0) = 6(x, 48 = 0.9sin27x.

Despite the large initial displacement, we see in
[Fig. 4] that by periods 390 through 400 of the
forcing term, the span has settled down to
one-noded, periodic oscillation of small amplitude
(approximately 0.072 radians).

solution  when

2b. We investigate the solution when

6(x,0)= 6(x,40)=1.0sin2zx.
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We have increased the amplitude @ of the
initial displacement only slightly different from 1la,
but we see in [Fig. 5] that this change has a
dramatic impact on the motion of the span. As in
la, by periods 390 through 400 of the forcing term,
the span has settled down to periodic oscillation.
But instead of settling to near equilibrium behavior,
as in 1la, the amplitude of the oscillation is
approximately 1.117 radians. Again, we note that
this is close to the amplitude observed at Tacoma

Narrows on the day of the collapse, [5].
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[Fig. 4] Experiment 2a: A small amplitude solution
at 1=0.06, z=1.4.

etax

xaposition ooy ventar spac

[Fig. 5] Experiment 2b: A large amplitude periodic
solution at A=0.06, £=1.4.

2c. Based on our results in experiments 1 and 2,
it is tempting to conjecture that the amplitude a,
of the periodic solution increases with the amplitude
a of the initial displacement, but this is not the

case. [Fig. 6] shows the amplitude @, of the

periodic solution versus the amplitude @ of the

initial displacement of the span for a= [0, 1.7].

We seec in experiments 1 and 2 that a large
initial displacement may result in large or small
amplitude periodic oscillations.

02 04 FERYY
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[Fig. 6] Experiment 2¢: Dependence on initial
conditions. The x and y axis represent

a=amplitude of initial torsional displacement and
amplitude of resulting periodic solution, respectively.
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4. Conclusion

All  numerical results above were only
approximately solved by finite difference method.
From the various numerical experiment, there are
rich phenomena associated with the oscillation of
the Tacoma Narrows Bridge. In this section, we try
to summarize the results of the numerical
experiments which we have described in the

previous section.

1. For p=[1.2,1.4], under small external

forcing Af(x, 1) = Asin uff(x), small or large
amplitude periodic oscillation may result; the
outcome depends on the amplitude @ of the initial

.

displacement

2. The amplitude @, of the periodic solution

does not depend on ¢ in an intuitive way, for

example, it does not increase with a.

3. The qualitative properties such as amplitude
and frequency of large amplitude solutions are
consistent with the behavior observed at the Tacoma
Narrows Bridge on the day of its collapse.
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