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THE MULTISOLITON SOLUTION OF GENERALIZED

BURGER’S EQUATION BY THE FORMAL

LINEARIZATION METHOD

Mohammad Mirzazadeh and Nasir Taghizadeh

Abstract. The formal linearization method is an efficient method for
constructing multisoliton solution of some nonlinear partial differential
equations. This method can be applied to nonintegrable equations as

well as to integrable ones. In this paper, we obtain multisoliton solution
of generalization Burger’s equation and the (3+1)-dimension Burger’s
equation and the Boussinesq equation by the formal linearization method.

1. Introduction

Many years ago there was interest in constructing solutions of nonlinear par-
tial differential equations in the form of infinite series. The direct linearization
of certain famous integrable nonlinear equations was carried out in [7]. Solu-
tions of the KdV equation were connected with solutions of the Hopf equation
by using formal series in [4]. Convergent exponential series were used in papers
[1, 2, 3, 5, 8, 9] for constructing solutions of the Boltzmann equations. The pos-
sibility to use such series for some other equations was discussed in [2]. Fourier
series were applied for constructing solutions of perturbed KdV equation in
[6]. In this paper we consider the class of equations and systems containing
arbitrary linear differential operators with constant coefficients and arbitrary
nonlinear analytic functions of dependent variables and their derivatives up
to some finite order in assumption that these equations possess a constant
solution. The formal linearzation method is based on formal linearization of
a nonlinear partial differential equation to the system of linear ordinary dif-
ferential equations, describing some finite-dimensional subspace of the space
of solutions of the linearized equation. It allows us to develop a very simple
technique of finding the linearizing transformation and to apply the method to
nonintegrable equations as well as to integrable ones, solutions have the form
of exponential or Fourier series. Let us note that the similar approach with the
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different technique was independently developed in [10] for the wide class of
evolution equations and in this case the convergence of constructed exponential
series was investigated [10]. The aim of this paper is to find exact multisoliton
solutions of generalized Burger’s equation and the (3 + 1)-dimension Burger’s
equation and the Boussinesq equation by the formal linearization method.

2. The method of formal linearization

Let us consider equations of the following form

(1) L̂(Dx1 , Dx2 , Dx3)u(x1, x2, x3) = N [u],

where

(2) L̂(Dx1
, Dx2

, Dx3
) =

K1∑
k1=0

K2∑
k2=0

K3∑
k3=0

lk1k2k3
Dk1

x1
Dk2

x2
Dk3

x3

is a linear differential operator with constant coefficients and

N [u] = N(u, u1, u2, . . . , up),

up =
∂p1+p2+p3u

∂x1
p1∂x2

p2∂x3
p3
, p = (p1, p2, p3),

is an arbitrary analytic function of u and of its derivatives up to some finite
order p. We suppose that Eq.(1) possesses the constant solution. Without loss
of generality we assume that

N [0] = 0,
∂N [0]

∂u
= 0,

∂N [0]

∂u1
= 0, . . . ,

∂N [0]

∂up
= 0.

We consider Eq.(1) in connection with the equation linearized near a zero
solution:

(3) L̂(Dx1
, Dx2

, Dx3
)w(x1, x2, x3) = 0.

Let L be the vector space of solutions of Eq.(3) and PN ⊂ L be the N -
dimensional subspace with the basis

wi = Wi exp(αiξi),

ξi = x3 − aix1 − bix2, i = 1, . . . , N.

Here ai, bi and Wi are some constants. The constants αi = αi(ai, bi) are
assumed to satisfy the dispersion relation

L̂(−αiai,−αibi, αi) = 0.

The subspace PN = {
∑N

i=1 Ciwi|Ci = constant} is specified by the system
of N linear ordinary differential equations

dwi

dξi
= αiwi, i = 1, . . . , N.

We use the following notation:

wδ
(N) = wδ1

1 wδ2
2 · · ·wδN

N ,
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δ = (δ1, δ2, . . . , δN ),

|δ| = ΣN
i=1δi.

It is obvious that the monomials wδ
(N) are the eigenfunctions of the operator

(2):

L̂(Dx1 , Dx2 , Dx3)w
δ
(N) = λδw

δ
(N)

with the eigenvalues

λδ =

K1∑
k1=0

K2∑
k2=0

K3∑
k3=0

lk1k2k3(−
N∑
i=1

αiaiδi)
k1(−

N∑
i=1

αibiδi)
k2(

N∑
i=1

αiδi)
k3 .

Theorem 1. If λδ ̸= 0 for every multiindex δ with positive integer components
δi ∈ Z+, i = 1, . . . , N , satisfying the condition |δ| ̸= 0, 1, then Eq.(1) possesses
solutions connected with solutions form PN by the formal transformation

(4) u =
∞∑

n=1

εnϕn(w1, w2, . . . , wN ),

where

(5) ϕn =
∑
|δ|=n

(An)δw
δ
(N)

are homogeneous polynomials of degree n in the variables wi. This transforma-
tion is unique (for the first term ϕ1 ∈ PN fixed).

Remark 1. Here ε is the grading parameter, finally we can put ε = 1.
The proof of the theorem is constructive. Substituting (4) into (1), ex-

panding N [u] into the power series in ε, and then collecting equal powers of
ε, we obtain the determining equations for the functions ϕn and show that if
λδ ̸= 0, then these equations possess the solution (5) with the coefficients (An)δ
uniquely determined through the coefficients (A1)δ by the recursion relation.
Thus, the theorem gives us the method for constructing particular solutions of
Eq.(1).

3. Application

3.1. The generalized Burger’s equation

The generalized Burger’s equation is in the form

(6) ut + uxx + uux + 2uuxxx + 3u2ux = 0,

where u = u(t, x). Thus, we can write

(7) L̂(Dt, Dx)u(t, x) = −uux − 2uuxxx − 3u2ux,

L̂(Dt, Dx) = Dt +D2
x.
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For simplicity we look for a solution of (7) in the form

(8) u =
∞∑

n=1

εnϕn(w1, w2),

where
wi = Wi exp[ai(x− ait)], i = 1, 2

is the basis of the subspace P 2 ⊂ L (let ai andWi be some real constants). Sub-
stituting (8) into (7) and collecting equal powers of ε we obtain the determining
equations for the functions ϕn as follows

L̂ϕ1 = 0,

L̂ϕn = −
n−1∑
k=1

ϕkDxϕn−k − 2

n−1∑
k=1

ϕkD
3
xϕn−k − 3

n−1∑
k=2

Dxϕn−k

k−1∑
l=1

ϕlϕk−l, n ≥ 2.

These equations possess the solution ϕn =
∑

|δ|=n(An)δw
δ
(2), δ = (δ1, δ2),

which can be rewritten in this case in the following form

(9) ϕn =
n∑

k=0

An
kw

k
1w

n−k
2 (ϕ1 ∈ P 2),

the coefficients An
k can be found through A1

0 and A1
1 (we can assume that either

A1
0 = A1

1 = 1 or A1
0 = 0, A1

1 = 1) by the recursion relation:
If n ≥ 2, 0 ≤ k ≤ n, then

An
k = − 1

λ(k,n−k)
{
n−1∑
l=1

n−l∑
m=0

(a1m+ a2(n− l −m))Al
k−mAn−l

m

+ 2

n−1∑
l=1

n−l∑
m=0

(a1m+ a2(n− l −m))3Al
k−mAn−l

m

+ 3
n−1∑
l=2

l−1∑
m=1

n−l∑
p=0

m∑
q=0

(a1p+ a2(n− l − p))An−l
p Am

q Al−m
k−p−q},

if k < 0 or k > n, then An
k = 0.

λ(k,n−k) = a21k(k − 1) + a22(n− k)((n− k)− 1) + 2a1a2k(n− k).

If a1 ̸= 0 and a2 ̸= 0, then λ(k,n−k) ̸= 0 for every pair (k, n − k) with
k, n ∈ Z+, n ≥ 2 , 0 ≤ k ≤ n.

Remark 2. If A1
0 = 0, then ϕ1 ∈ P 1 and we get from (8) the expansion for a 1-

soliton solution. For obtaining the N -soliton solutions, we must take ϕ1 ∈ PN .

3.2. The (3+1)-dimension Burger’s equation

Let us consider the (3 + 1)-dimension Burger’s equation

(10) L̂(Dt, Dy, Dz, Dx)u(t, y, z, x) = −α(uux + uuy + uuz),

L̂(Dt, Dy, Dz, Dx) = Dt − β(D2
x +D2

y +D2
z).
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In this case, the subspace P 2 is generated by the functions

wi = Wi exp[−
ai

β(1 + b2i + c2i )
(x− ait− biy − ciz)], i = 1, 2.

Our procedure give the solution

(11) u =

∞∑
n=1

εn
n∑

k=0

An
kw

k
1w

n−k
2 ,

where if n ≥ 2, 0 ≤ k ≤ n, then

An
k = − α

λ(k,n−k)

n−1∑
l=1

n−l∑
m=0

[−a1(1− b1 − c1)

β(1 + b21 + c21)
m

− a2(1− b2 − c2)

β(1 + b22 + c22)
(n− l −m)]Al

k−mAn−l
m ,

if k < 0 or k > n, then An
k = 0.

λ(k,n−k) =
a21

β(1 + b21 + c21)
k(1− k) +

a22
β(1 + b22 + c22)

(n− k)(1− (n− k))

− 2a1a2
β(1 + b21 + c21)(1 + b22 + c22)

(1 + b1b2 + c1c2)k(n− k).

Here either A1
0 = A1

1 = 1or A1
0 = 0, A1

1 = 1. If a1 ̸= 0 and a2 ̸= 0, then
λ(k,n−k) ̸= 0 for every pair (k, n− k) with k, n ∈ Z+, n ≥ 2 , 0 ≤ k ≤ n.

In (11), if A1
0 = 0, then we get

(12)

u =
∞∑

n=1

(− α

2a1
)n−1(1− b1 − c1)

n−1(εw1)
n

=
εw1

1 + α
2a1

(1− b1 − c1)εw1

=
a1

α(1− b1 − c1)

2w

1 + w
,

where w = α
2a1

(1− b1 − c1)εw1.

In(t, y, z, x)-variables we have

(13) u =
a1

α(1− b1 − c1)
(1− tanh(

a1
2β(1 + b21 + c21)

(x−a1t− b1y− c1z+x0))),

where x0 is arbitrary constant.
Then (11) is a 2-soliton solution of the (3 + 1)-dimension Burger’s equation

and (13) is a 1-soliton solution of the (3 + 1)-dimension Burger’s equation.

3.3. The Boussinesq equation

Let us consider the Boussinesq equation

(14) L̂(Dt, Dx)u(t, x) = −αu2
x − αuuxx,

L̂(Dt, Dx) = D2
t −D2

x − βD4
x.
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We look for a solution of (14) in the form

(15) u =

∞∑
n=1

εnϕn(w1, w2),

where

wi = Wi exp[

√
a2i − 1

β
(x− ait)], i = 1, 2

is the basis of the subspace P 2 ⊂ L (let si and Wi be some real constants).
Substituting (15) into (14) and collecting equal powers of ε we obtain the
determining equations for the functions ϕn as follows:

L̂ϕ1 = 0,

L̂ϕn = −α(

n−1∑
k=1

DxϕkDxϕn−k +

n−1∑
k=1

ϕkD
2
xϕn−k), n ≥ 2.

These equations possess the solution

ϕn =

n∑
k=0

An
kw

k
1w

n−k
2 (ϕ1 ∈ P 2),

the coefficients An
k can be found through A1

0 and A1
1 (we can assume that either

A1
0 = A1

1 = 1 or A1
0 = 0, A1

1 = 1) by the recursion relation:
If n ≥ 2, 0 ≤ k ≤ n, then

An
k =

−α

λ(k,n−k)
{
n−1∑
l=1

n−l∑
m=0

[

√
a21 − 1

β
(k −m) +

√
a22 − 1

β
(l − k +m)]

[

√
a21 − 1

β
m+

√
a22 − 1

β
(n− l −m)]Al

k−mAn−l
m

+
n−1∑
l=1

n−l∑
m=0

[

√
a21 − 1

β
m+

√
a22 − 1

β
(n− l −m)]2Al

k−mAn−l
m },

if k < 0 or k > n, then An
k = 0.

λ(k,n−k) =
(a21 − 1)2

β
k2(1− k2) +

(a22 − 1)2

β
(n− k)2(1− (n− k)2)

− 6
(a21 − 1)(a22 − 1)

β
k2(n− k)2

+ 2

√
(a21 − 1)(a22 − 1)

β
{(a1a2 − 1)k(n− k)

− 2(a21 − 1)k3(n− k)− 2(a22 − 1)k(n− k)3}.

If a1 < −1, a2 < −1, a1 > 1, a2 > 1, then λ(k,n−k) ̸= 0 for every pair (k, n− k)
with k, n ∈ Z+, n ≥ 2 , 0 ≤ k ≤ n.
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If A1
0 = 0, then we get

u = εw1 −
α

6(1− a21)
(εw1)

2 +
α2

48(1− a21)
2
(εw1)

3 − · · ·

=
12(1− a21)

α

∞∑
n=1

(−1)n+1nwn,

where w = εα
12(1−a2

1)
w1.

In(t, x)-variables we have

(16) u(t, x) = ±3(1− a21)

α
sech2(

1

2

√
a21 − 1

β
(x− a1t+ x0)),

where x0 is arbitrary constant.
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