THE MULTISOLITON SOLUTION OF GENERALIZED BURGER'S EQUATION BY THE FORMAL LINEARIZATION METHOD

Mohammad Mirzazadeh and Nasir Taghizadeh

Abstract

The formal linearization method is an efficient method for constructing multisoliton solution of some nonlinear partial differential equations. This method can be applied to nonintegrable equations as well as to integrable ones. In this paper, we obtain multisoliton solution of generalization Burger's equation and the ($3+1$)-dimension Burger's equation and the Boussinesq equation by the formal linearization method.

1. Introduction

Many years ago there was interest in constructing solutions of nonlinear partial differential equations in the form of infinite series. The direct linearization of certain famous integrable nonlinear equations was carried out in [7]. Solutions of the KdV equation were connected with solutions of the Hopf equation by using formal series in [4]. Convergent exponential series were used in papers $[1,2,3,5,8,9]$ for constructing solutions of the Boltzmann equations. The possibility to use such series for some other equations was discussed in [2]. Fourier series were applied for constructing solutions of perturbed KdV equation in [6]. In this paper we consider the class of equations and systems containing arbitrary linear differential operators with constant coefficients and arbitrary nonlinear analytic functions of dependent variables and their derivatives up to some finite order in assumption that these equations possess a constant solution. The formal linearzation method is based on formal linearization of a nonlinear partial differential equation to the system of linear ordinary differential equations, describing some finite-dimensional subspace of the space of solutions of the linearized equation. It allows us to develop a very simple technique of finding the linearizing transformation and to apply the method to nonintegrable equations as well as to integrable ones, solutions have the form of exponential or Fourier series. Let us note that the similar approach with the

[^0]different technique was independently developed in [10] for the wide class of evolution equations and in this case the convergence of constructed exponential series was investigated [10]. The aim of this paper is to find exact multisoliton solutions of generalized Burger's equation and the $(3+1)$-dimension Burger's equation and the Boussinesq equation by the formal linearization method.

2. The method of formal linearization

Let us consider equations of the following form

$$
\begin{equation*}
\hat{L}\left(D_{x_{1}}, D_{x_{2}}, D_{x_{3}}\right) u\left(x_{1}, x_{2}, x_{3}\right)=N[u], \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{L}\left(D_{x_{1}}, D_{x_{2}}, D_{x_{3}}\right)=\sum_{k_{1}=0}^{K_{1}} \sum_{k_{2}=0}^{K_{2}} \sum_{k_{3}=0}^{K_{3}} l_{k_{1} k_{2} k_{3}} D_{x_{1}}^{k_{1}} D_{x_{2}}^{k_{2}} D_{x_{3}}^{k_{3}} \tag{2}
\end{equation*}
$$

is a linear differential operator with constant coefficients and

$$
\begin{gathered}
N[u]=N\left(u, u_{1}, u_{2}, \ldots, u_{p}\right), \\
u_{p}=\frac{\partial^{p_{1}+p_{2}+p_{3}} u}{\partial x_{1} p_{1} \partial x_{2}{ }^{p_{2}} \partial x_{3} p_{3}}, p=\left(p_{1}, p_{2}, p_{3}\right),
\end{gathered}
$$

is an arbitrary analytic function of u and of its derivatives up to some finite order p. We suppose that Eq.(1) possesses the constant solution. Without loss of generality we assume that

$$
N[0]=0, \frac{\partial N[0]}{\partial u}=0, \frac{\partial N[0]}{\partial u_{1}}=0, \ldots, \frac{\partial N[0]}{\partial u_{p}}=0 .
$$

We consider Eq.(1) in connection with the equation linearized near a zero solution:

$$
\begin{equation*}
\hat{L}\left(D_{x_{1}}, D_{x_{2}}, D_{x_{3}}\right) w\left(x_{1}, x_{2}, x_{3}\right)=0 \tag{3}
\end{equation*}
$$

Let L be the vector space of solutions of Eq.(3) and $P^{N} \subset L$ be the N dimensional subspace with the basis

$$
\begin{gathered}
w_{i}=W_{i} \exp \left(\alpha_{i} \xi_{i}\right) \\
\xi_{i}=x_{3}-a_{i} x_{1}-b_{i} x_{2}, i=1, \ldots, N
\end{gathered}
$$

Here a_{i}, b_{i} and W_{i} are some constants. The constants $\alpha_{i}=\alpha_{i}\left(a_{i}, b_{i}\right)$ are assumed to satisfy the dispersion relation

$$
\hat{L}\left(-\alpha_{i} a_{i},-\alpha_{i} b_{i}, \alpha_{i}\right)=0
$$

The subspace $P^{N}=\left\{\sum_{i=1}^{N} C_{i} w_{i} \mid C_{i}=\right.$ constant $\}$ is specified by the system of N linear ordinary differential equations

$$
\frac{d w_{i}}{d \xi_{i}}=\alpha_{i} w_{i}, i=1, \ldots, N
$$

We use the following notation:

$$
w_{(N)}^{\delta}=w_{1}^{\delta_{1}} w_{2}^{\delta_{2}} \cdots w_{N}^{\delta_{N}}
$$

$$
\begin{gathered}
\delta=\left(\delta_{1}, \delta_{2}, \ldots, \delta_{N}\right), \\
|\delta|=\Sigma_{i=1}^{N} \delta_{i} .
\end{gathered}
$$

It is obvious that the monomials $w_{(N)}^{\delta}$ are the eigenfunctions of the operator (2):

$$
\hat{L}\left(D_{x_{1}}, D_{x_{2}}, D_{x_{3}}\right) w_{(N)}^{\delta}=\lambda_{\delta} w_{(N)}^{\delta}
$$

with the eigenvalues

$$
\lambda_{\delta}=\sum_{k_{1}=0}^{K_{1}} \sum_{k_{2}=0}^{K_{2}} \sum_{k_{3}=0}^{K_{3}} l_{k_{1} k_{2} k_{3}}\left(-\sum_{i=1}^{N} \alpha_{i} a_{i} \delta_{i}\right)^{k_{1}}\left(-\sum_{i=1}^{N} \alpha_{i} b_{i} \delta_{i}\right)^{k_{2}}\left(\sum_{i=1}^{N} \alpha_{i} \delta_{i}\right)^{k_{3}} .
$$

Theorem 1. If $\lambda_{\delta} \neq 0$ for every multiindex δ with positive integer components $\delta_{i} \in \mathbb{Z}_{+}, i=1, \ldots, N$, satisfying the condition $|\delta| \neq 0,1$, then Eq.(1) possesses solutions connected with solutions form P^{N} by the formal transformation

$$
\begin{equation*}
u=\sum_{n=1}^{\infty} \varepsilon^{n} \phi_{n}\left(w_{1}, w_{2}, \ldots, w_{N}\right) \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
\phi_{n}=\sum_{|\delta|=n}\left(A_{n}\right)_{\delta} w_{(N)}^{\delta} \tag{5}
\end{equation*}
$$

are homogeneous polynomials of degree n in the variables w_{i}. This transformation is unique (for the first term $\phi_{1} \in P^{N}$ fixed).
Remark 1. Here ε is the grading parameter, finally we can put $\varepsilon=1$.
The proof of the theorem is constructive. Substituting (4) into (1), expanding $N[u]$ into the power series in ε, and then collecting equal powers of ε, we obtain the determining equations for the functions ϕ_{n} and show that if $\lambda_{\delta} \neq 0$, then these equations possess the solution (5) with the coefficients $\left(A_{n}\right)_{\delta}$ uniquely determined through the coefficients $\left(A_{1}\right)_{\delta}$ by the recursion relation. Thus, the theorem gives us the method for constructing particular solutions of Eq.(1).

3. Application

3.1. The generalized Burger's equation

The generalized Burger's equation is in the form

$$
\begin{equation*}
u_{t}+u_{x x}+u u_{x}+2 u u_{x x x}+3 u^{2} u_{x}=0 \tag{6}
\end{equation*}
$$

where $u=u(t, x)$. Thus, we can write

$$
\begin{gather*}
\hat{L}\left(D_{t}, D_{x}\right) u(t, x)=-u u_{x}-2 u u_{x x x}-3 u^{2} u_{x} \tag{7}\\
\hat{L}\left(D_{t}, D_{x}\right)=D_{t}+D_{x}^{2}
\end{gather*}
$$

For simplicity we look for a solution of (7) in the form

$$
\begin{equation*}
u=\sum_{n=1}^{\infty} \varepsilon^{n} \phi_{n}\left(w_{1}, w_{2}\right), \tag{8}
\end{equation*}
$$

where

$$
w_{i}=W_{i} \exp \left[a_{i}\left(x-a_{i} t\right)\right], i=1,2
$$

is the basis of the subspace $P^{2} \subset L$ (let a_{i} and W_{i} be some real constants). Substituting (8) into (7) and collecting equal powers of ε we obtain the determining equations for the functions ϕ_{n} as follows

$$
\hat{L} \phi_{1}=0
$$

$\hat{L} \phi_{n}=-\sum_{k=1}^{n-1} \phi_{k} D_{x} \phi_{n-k}-2 \sum_{k=1}^{n-1} \phi_{k} D_{x}^{3} \phi_{n-k}-3 \sum_{k=2}^{n-1} D_{x} \phi_{n-k} \sum_{l=1}^{k-1} \phi_{l} \phi_{k-l}, n \geq 2$.
These equations possess the solution $\phi_{n}=\sum_{|\delta|=n}\left(A_{n}\right)_{\delta} w_{(2)}^{\delta}, \delta=\left(\delta_{1}, \delta_{2}\right)$, which can be rewritten in this case in the following form

$$
\begin{equation*}
\phi_{n}=\sum_{k=0}^{n} A_{k}^{n} w_{1}^{k} w_{2}^{n-k}\left(\phi_{1} \in P^{2}\right) \tag{9}
\end{equation*}
$$

the coefficients A_{k}^{n} can be found through A_{0}^{1} and A_{1}^{1} (we can assume that either $A_{0}^{1}=A_{1}^{1}=1$ or $A_{0}^{1}=0, A_{1}^{1}=1$) by the recursion relation:
If $n \geq 2,0 \leq k \leq n$, then

$$
\begin{aligned}
A_{k}^{n}= & -\frac{1}{\lambda_{(k, n-k)}}\left\{\sum_{l=1}^{n-1} \sum_{m=0}^{n-l}\left(a_{1} m+a_{2}(n-l-m)\right) A_{k-m}^{l} A_{m}^{n-l}\right. \\
& +2 \sum_{l=1}^{n-1} \sum_{m=0}^{n-l}\left(a_{1} m+a_{2}(n-l-m)\right)^{3} A_{k-m}^{l} A_{m}^{n-l} \\
& \left.+3 \sum_{l=2}^{n-1} \sum_{m=1}^{l-1} \sum_{p=0}^{n-l} \sum_{q=0}^{m}\left(a_{1} p+a_{2}(n-l-p)\right) A_{p}^{n-l} A_{q}^{m} A_{k-p-q}^{l-m}\right\},
\end{aligned}
$$

if $k<0$ or $k>n$, then $A_{k}^{n}=0$.

$$
\lambda_{(k, n-k)}=a_{1}^{2} k(k-1)+a_{2}^{2}(n-k)((n-k)-1)+2 a_{1} a_{2} k(n-k)
$$

If $a_{1} \neq 0$ and $a_{2} \neq 0$, then $\lambda_{(k, n-k)} \neq 0$ for every pair $(k, n-k)$ with $k, n \in \mathbb{Z}_{+}, n \geq 2,0 \leq k \leq n$.
Remark 2. If $A_{0}^{1}=0$, then $\phi_{1} \in P^{1}$ and we get from (8) the expansion for a 1soliton solution. For obtaining the N-soliton solutions, we must take $\phi_{1} \in P^{N}$.

3.2. The (3+1)-dimension Burger's equation

Let us consider the ($3+1$)-dimension Burger's equation

$$
\begin{gather*}
\hat{L}\left(D_{t}, D_{y}, D_{z}, D_{x}\right) u(t, y, z, x)=-\alpha\left(u u_{x}+u u_{y}+u u_{z}\right), \tag{10}\\
\hat{L}\left(D_{t}, D_{y}, D_{z}, D_{x}\right)=D_{t}-\beta\left(D_{x}^{2}+D_{y}^{2}+D_{z}^{2}\right)
\end{gather*}
$$

In this case, the subspace P^{2} is generated by the functions

$$
w_{i}=W_{i} \exp \left[-\frac{a_{i}}{\beta\left(1+b_{i}^{2}+c_{i}^{2}\right)}\left(x-a_{i} t-b_{i} y-c_{i} z\right)\right], i=1,2
$$

Our procedure give the solution

$$
\begin{equation*}
u=\sum_{n=1}^{\infty} \varepsilon^{n} \sum_{k=0}^{n} A_{k}^{n} w_{1}^{k} w_{2}^{n-k}, \tag{11}
\end{equation*}
$$

where if $n \geq 2,0 \leq k \leq n$, then

$$
\begin{aligned}
A_{k}^{n}= & -\frac{\alpha}{\lambda_{(k, n-k)}} \sum_{l=1}^{n-1} \sum_{m=0}^{n-l}\left[-\frac{a_{1}\left(1-b_{1}-c_{1}\right)}{\beta\left(1+b_{1}^{2}+c_{1}^{2}\right)} m\right. \\
& \left.-\frac{a_{2}\left(1-b_{2}-c_{2}\right)}{\beta\left(1+b_{2}^{2}+c_{2}^{2}\right)}(n-l-m)\right] A_{k-m}^{l} A_{m}^{n-l}
\end{aligned}
$$

if $k<0$ or $k>n$, then $A_{k}^{n}=0$.

$$
\begin{aligned}
\lambda_{(k, n-k)}= & \frac{a_{1}^{2}}{\beta\left(1+b_{1}^{2}+c_{1}^{2}\right)} k(1-k)+\frac{a_{2}^{2}}{\beta\left(1+b_{2}^{2}+c_{2}^{2}\right)}(n-k)(1-(n-k)) \\
& -\frac{2 a_{1} a_{2}}{\beta\left(1+b_{1}^{2}+c_{1}^{2}\right)\left(1+b_{2}^{2}+c_{2}^{2}\right)}\left(1+b_{1} b_{2}+c_{1} c_{2}\right) k(n-k)
\end{aligned}
$$

Here either $A_{0}^{1}=A_{1}^{1}=1$ or $A_{0}^{1}=0, A_{1}^{1}=1$. If $a_{1} \neq 0$ and $a_{2} \neq 0$, then $\lambda_{(k, n-k)} \neq 0$ for every pair $(k, n-k)$ with $k, n \in \mathbb{Z}_{+}, n \geq 2,0 \leq k \leq n$.

In (11), if $A_{0}^{1}=0$, then we get

$$
\begin{align*}
u & =\sum_{n=1}^{\infty}\left(-\frac{\alpha}{2 a_{1}}\right)^{n-1}\left(1-b_{1}-c_{1}\right)^{n-1}\left(\varepsilon w_{1}\right)^{n} \\
& =\frac{\varepsilon w_{1}}{1+\frac{\alpha}{2 a_{1}}\left(1-b_{1}-c_{1}\right) \varepsilon w_{1}} \tag{12}\\
& =\frac{a_{1}}{\alpha\left(1-b_{1}-c_{1}\right)} \frac{2 w}{1+w},
\end{align*}
$$

where $w=\frac{\alpha}{2 a_{1}}\left(1-b_{1}-c_{1}\right) \varepsilon w_{1}$.
$\operatorname{In}(t, y, z, x)$-variables we have
(13) $u=\frac{a_{1}}{\alpha\left(1-b_{1}-c_{1}\right)}\left(1-\tanh \left(\frac{a_{1}}{2 \beta\left(1+b_{1}^{2}+c_{1}^{2}\right)}\left(x-a_{1} t-b_{1} y-c_{1} z+x_{0}\right)\right)\right)$, where x_{0} is arbitrary constant.

Then (11) is a 2 -soliton solution of the $(3+1)$-dimension Burger's equation and (13) is a 1 -soliton solution of the $(3+1)$-dimension Burger's equation.

3.3. The Boussinesq equation

Let us consider the Boussinesq equation

$$
\begin{gather*}
\hat{L}\left(D_{t}, D_{x}\right) u(t, x)=-\alpha u_{x}^{2}-\alpha u u_{x x} \tag{14}\\
\hat{L}\left(D_{t}, D_{x}\right)=D_{t}^{2}-D_{x}^{2}-\beta D_{x}^{4}
\end{gather*}
$$

We look for a solution of (14) in the form

$$
\begin{equation*}
u=\sum_{n=1}^{\infty} \varepsilon^{n} \phi_{n}\left(w_{1}, w_{2}\right) \tag{15}
\end{equation*}
$$

where

$$
w_{i}=W_{i} \exp \left[\sqrt{\frac{a_{i}^{2}-1}{\beta}}\left(x-a_{i} t\right)\right], i=1,2
$$

is the basis of the subspace $P^{2} \subset L$ (let s_{i} and W_{i} be some real constants). Substituting (15) into (14) and collecting equal powers of ε we obtain the determining equations for the functions ϕ_{n} as follows:

$$
\begin{aligned}
\hat{L} \phi_{1}=0 \\
\hat{L} \phi_{n}=-\alpha\left(\sum_{k=1}^{n-1} D_{x} \phi_{k} D_{x} \phi_{n-k}+\sum_{k=1}^{n-1} \phi_{k} D_{x}^{2} \phi_{n-k}\right), n \geq 2
\end{aligned}
$$

These equations possess the solution

$$
\phi_{n}=\sum_{k=0}^{n} A_{k}^{n} w_{1}^{k} w_{2}^{n-k}\left(\phi_{1} \in P^{2}\right)
$$

the coefficients A_{k}^{n} can be found through A_{0}^{1} and A_{1}^{1} (we can assume that either $A_{0}^{1}=A_{1}^{1}=1$ or $A_{0}^{1}=0, A_{1}^{1}=1$) by the recursion relation:
If $n \geq 2,0 \leq k \leq n$, then

$$
\begin{aligned}
A_{k}^{n}= & \frac{-\alpha}{\lambda_{(k, n-k)}}\left\{\sum_{l=1}^{n-1} \sum_{m=0}^{n-l}\left[\sqrt{\frac{a_{1}^{2}-1}{\beta}}(k-m)+\sqrt{\frac{a_{2}^{2}-1}{\beta}}(l-k+m)\right]\right. \\
& {\left[\sqrt{\frac{a_{1}^{2}-1}{\beta}} m+\sqrt{\frac{a_{2}^{2}-1}{\beta}}(n-l-m)\right] A_{k-m}^{l} A_{m}^{n-l} } \\
& \left.+\sum_{l=1}^{n-1} \sum_{m=0}^{n-l}\left[\sqrt{\frac{a_{1}^{2}-1}{\beta}} m+\sqrt{\frac{a_{2}^{2}-1}{\beta}}(n-l-m)\right]^{2} A_{k-m}^{l} A_{m}^{n-l}\right\},
\end{aligned}
$$

if $k<0$ or $k>n$, then $A_{k}^{n}=0$.

$$
\begin{aligned}
\lambda_{(k, n-k)}= & \frac{\left(a_{1}^{2}-1\right)^{2}}{\beta} k^{2}\left(1-k^{2}\right)+\frac{\left(a_{2}^{2}-1\right)^{2}}{\beta}(n-k)^{2}\left(1-(n-k)^{2}\right) \\
& -6 \frac{\left(a_{1}^{2}-1\right)\left(a_{2}^{2}-1\right)}{\beta} k^{2}(n-k)^{2} \\
& +2 \frac{\sqrt{\left(a_{1}^{2}-1\right)\left(a_{2}^{2}-1\right)}}{\beta}\left\{\left(a_{1} a_{2}-1\right) k(n-k)\right. \\
& \left.-2\left(a_{1}^{2}-1\right) k^{3}(n-k)-2\left(a_{2}^{2}-1\right) k(n-k)^{3}\right\} .
\end{aligned}
$$

If $a_{1}<-1, a_{2}<-1, a_{1}>1, a_{2}>1$, then $\lambda_{(k, n-k)} \neq 0$ for every pair $(k, n-k)$ with $k, n \in \mathbb{Z}_{+}, n \geq 2,0 \leq k \leq n$.

If $A_{0}^{1}=0$, then we get

$$
\begin{aligned}
u & =\varepsilon w_{1}-\frac{\alpha}{6\left(1-a_{1}^{2}\right)}\left(\varepsilon w_{1}\right)^{2}+\frac{\alpha^{2}}{48\left(1-a_{1}^{2}\right)^{2}}\left(\varepsilon w_{1}\right)^{3}-\cdots \\
& =\frac{12\left(1-a_{1}^{2}\right)}{\alpha} \sum_{n=1}^{\infty}(-1)^{n+1} n w^{n}
\end{aligned}
$$

where $w=\frac{\varepsilon \alpha}{12\left(1-a_{1}^{2}\right)} w_{1}$.
$\operatorname{In}(t, x)$-variables we have

$$
\begin{equation*}
u(t, x)= \pm \frac{3\left(1-a_{1}^{2}\right)}{\alpha} \operatorname{sech}^{2}\left(\frac{1}{2} \sqrt{\frac{a_{1}^{2}-1}{\beta}}\left(x-a_{1} t+x_{0}\right)\right) \tag{16}
\end{equation*}
$$

where x_{0} is arbitrary constant.
Acknowledgement. The authors would like to thank the referees for their useful comments which lead to some improvements of the current paper.

References

[1] V. A. Baikov, Structure of the general solution and classification of partial sums of the Boltzmann nonlinear equation for Maxwellian molecules, Dokl. Akad. Nauk SSSR 251 (1980), no. 6, 1361-1365.
[2] , Poincare's theorem. Boltzmann's equation and Korteweg-de Vries-type equations, Dokl. Akad. Nauk SSSR 256 (1981), no. 6, 1341-1346.
[3] , Exact solutions of the nonlinear Boltzmann equation and the theory of relaxation of a Maxwell gas, Teoret. Mat. Fiz. 60 (1984), no. 2, 280-310.
[4] V. A. Baikov, R. K. Gazizov, and N. Kh. Ibragimov, Linearization and formal symmetries of the Korteweg-de Vries equation, Dokl. Akad. Nauk SSSR 303 (1988), no. 4, 781-784; translation in Soviet Math. Dokl. 38 (1989), no. 3, 588-591.
[5] A. V. Mishchenko and D. Ya Petrina, Linearization and exact solutions of a class of Boltzmann equations, Teoret. Mat. Fiz. 77 (1988), no. 1, 135-153.
[6] N. V. Nikolenko, Invariant, asymptotically stable tori of the perturbed Korteweg-de Vries equation, Uspekhi Mat. Nauk 35 (1980), no. 5(215), 121-180, 271-272.
[7] R. R. Rosales, Exact solutions of some nonlinear evolution equations, Stud. Appl. Math. 59 (1978), no. 2, 117-151.
[8] V. V. Vedenyapin, Anisotropic solutions of a nonlinear Boltzmann equation for Maxwell molecules, Dokl. Akad. Nauk SSSR 256 (1981), no. 2, 338-342.
[9] , Differential forms in spaces without a norm. A uniqueness theorem for the Boltzmann H-function, Uspekhi Mat. Nauk 43 (1988), no. 1(259), 159-179, 248; translation in Russian Math. Surveys 43 (1988), no. 1, 193-219.
[10] \qquad , Exponential series and superposition of travelling waves, (to appear).
M. Mirzazadeh

Department of Mathematics
Faculty of Science, University of Guilan
P.O.Box 1914, Rasht, Iran

E-mail address: mirzazadehs2@guilan.ac.ir
N. Taghizadeh

Department of Mathematics
Faculty of Science, University of Guilan
P.O.Box 1914, Rasht, Iran

E-mail address: taghizadeh@guilan.ac.ir

[^0]: Received October 4, 2008; Revised November 21, 2010.
 2010 Mathematics Subject Classification. 47F05, 35Q55, 35G25.
 Key words and phrases. formal linearization method, multisoliton solution, generalized Burger's equation, $(3+1)$-dimension Burger's equation, Boussinesq equation.

