• Title/Summary/Keyword: Nonlinear differential equation

Search Result 447, Processing Time 0.025 seconds

Recalculation of the Particle Dynamic Model for Gas-Solid Cyclone (싸이클론에 대한 입자운동방정식의 재계산)

  • Lee, Kyung-Mi;Jang, Jung-Hee;Jo, Young-Min;Kim, Chang-Nyung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.6
    • /
    • pp.708-717
    • /
    • 2007
  • In the present study, one of the widely applied equations for gas-solid cyclones, Leith and Licht model, was evaluated based on the 3-D CFD technique. The initial and boundary values of radial position and tangential velocity obtain-ed from the CFD simulation enabled complete calculation of the nonlinear second differential equation. This approach showed about 30% errors between calculations with and without the second order differential term. The calculation by using the simple first order equation presented shorter times to migrate up to the inner wall of the cyclone than by the second order, which theoretically implies higher separation efficiency. Further comparison is now under evaluation in terms of the detailed grade efficiency.

Dynamic Stability Analysis of a Single Cam Drive Mechanism (단일 캠 구동기구의 동 안정성 해석)

  • 김홍보;전혁수;이종원;박윤식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.526-533
    • /
    • 1990
  • The dynamic stability of a single cam drive mechanism is investigated by an analytical approach. The nonlinear differential equation describing the motion of a single cam drive mechanism is linearized with respect to the imput power angle, and results a linear parametric differential equation. The instability region is examined by applying the harmonic balance method to linearized parametric equation having periodicity. Through the dynamic stability analysis of a single cam drive mechanism, it is observed that the parametric resonances exist and the instability regions tend to become wide as increasing the drive speed and follower mass.

HELICOIDAL MINIMAL SURFACES IN A CONFORMALLY FLAT 3-SPACE

  • Araujo, Kellcio Oliveira;Cui, Ningwei;Pina, Romildo da Silva
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.2
    • /
    • pp.531-540
    • /
    • 2016
  • In this work, we introduce the complete Riemannian manifold $\mathbb{F}_3$ which is a three-dimensional real vector space endowed with a conformally flat metric that is a solution of the Einstein equation. We obtain a second order nonlinear ordinary differential equation that characterizes the helicoidal minimal surfaces in $\mathbb{F}_3$. We show that the helicoid is a complete minimal surface in $\mathbb{F}_3$. Moreover we obtain a local solution of this differential equation which is a two-parameter family of functions ${\lambda}_h,K_2$ explicitly given by an integral and defined on an open interval. Consequently, we show that the helicoidal motion applied on the curve defined from ${\lambda}_h,K_2$ gives a two-parameter family of helicoidal minimal surfaces in $\mathbb{F}_3$.

Internal resonance and nonlinear response of an axially moving beam: two numerical techniques

  • Ghayesh, Mergen H.;Amabili, Marco
    • Coupled systems mechanics
    • /
    • v.1 no.3
    • /
    • pp.235-245
    • /
    • 2012
  • The nonlinear resonant response of an axially moving beam is investigated in this paper via two different numerical techniques: the pseudo-arclength continuation technique and direct time integration. In particular, the response is examined for the system in the neighborhood of a three-to-one internal resonance between the first two modes as well as for the case where it is not. The equation of motion is reduced into a set of nonlinear ordinary differential equation via the Galerkin technique. This set is solved using the pseudo-arclength continuation technique and the results are confirmed through use of direct time integration. Vibration characteristics of the system are presented in the form of frequency-response curves, time histories, phase-plane diagrams, and fast Fourier transforms (FFTs).

Solving Dynamic Equation Using Combination of Both Trigonometric and Hyperbolic Cosine Functions for Approximating Acceleration

  • Quoc Do Kien;Phuoc Nguyen Trong
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.481-486
    • /
    • 2005
  • This paper introduces a numerical method for integration of the linear and nonlinear differential dynamic equation of motion. The variation of acceleration in two time steps is approximated as a combination of both trigonometric cosine and hyperbolic cosine functions with weighted coefficient. From which all necessary formulae are elaborated for the direct integration of the governing equation. A number of linear and nonlinear dynamic problems with various degrees of freedom are analysed using both the suggested method and Newmark method for the comparison. The numerical results show high advantages and effectiveness of the new method.

A NOTE ON THE OSCILLATION CRITERIA OF SOLUTIONS TO SECOND ORDER NONLINEAR DIFFERENTIAL EQUATION

  • Kim, Yong-Ki
    • The Pure and Applied Mathematics
    • /
    • v.2 no.1
    • /
    • pp.53-59
    • /
    • 1995
  • Consider a solution y(t) of the nonlinear equation (E) y" + f(t, y) = 0. A solution y(t) is said to be oscillatory if for every T > 0 there exists $t_{0}$ > T such that y($t_{0}$) = 0. Let F be the class of solutions of (E) which are indefinitely continuable to the right, i.e. y $\in$ F implies y(t) exists as a solution to (E) on some interval of the form [t$\sub$y/, $\infty$). Equation (E) is said to be oscillatory if each solution from F is oscillatory.(omitted)

  • PDF

Chaotic Out-of-Plane Vibration of Curved Pipe Conveying Oscillatory Flow (조화진동유동을 포함한 곡선파이프계의 외평면 혼돈 운동 연구)

  • 홍성철
    • Journal of KSNVE
    • /
    • v.10 no.5
    • /
    • pp.849-858
    • /
    • 2000
  • In this paper the chaotic out-of-plane vibrations of the uniformly curved pipe with pulsating flow are theoretically investigated. The derived equations of motion contain the effects of nonlinear curvature and torsional coupling. The corresponding nonlinear ordinary differential equation is a type of nonhomogenous Hill's equation . this is transformed into the averaged equation by averaging theorem. Bifurcation curves of chaotic motion are obtained by Melnikov's method and plotted in several cases of frequency ratios. The theoretically obtained results are demonstrated by numerical simulation. And strange attractors are shown.

  • PDF

Global Attractivity and Oscillations in a Nonlinear Impulsive Parabolic Equation with Delay

  • Wang, Xiao;Li, Zhixiang
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.4
    • /
    • pp.593-611
    • /
    • 2008
  • Global attractivity and oscillatory behavior of the following nonlinear impulsive parabolic differential equation which is a general form of many population models $$\array{\{{{\frac {{\partial}u(t,x)}{{\partial}t}=\Delta}u(t,x)-{\delta}u(t,x)+f(u(t-\tau,x)),\;t{\neq}t_k,\\u(t^+_k,x)-u(t_k,x)=g_k(u(t_k,x)),\;k{\in}I_\infty,}\;\;\;\;\;\;\;\;(*)$$ are considered. Some new sufficient conditions for global attractivity and oscillation of the solutions of (*) with Neumann boundary condition are established. These results no only are true but also improve and complement existing results for (*) without diffusion or impulses. Moreover, when these results are applied to the Nicholson's blowflies model and the model of Hematopoiesis, some new results are obtained.

Analytical approximate solutions for large post-buckling response of a hygrothermal beam

  • Yu, Yongping;Sun, Youhong
    • Structural Engineering and Mechanics
    • /
    • v.43 no.2
    • /
    • pp.211-223
    • /
    • 2012
  • This paper deals with large deformation post-buckling of a linear-elastic and hygrothermal beam with axially nonmovable pinned-pinned ends and subjected to a significant increase in swelling by an alternative method. Analytical approximate solutions for the geometrically nonlinear problem are presented. The solution for the limiting case of a string is also obtained. By coupling of the well-known Maclaurin series expansion and orthogonal Chebyshev polynomials, the governing differential equation with sinusoidal nonlinearity can be reduced to form a cubic-nonlinear equation, and supplementary condition with cosinoidal nonlinearity can also be simplified to be a polynomial integral equation. Analytical approximations to the resulting boundary condition problem are established by combining the Newton's method with the method of harmonic balance. Two approximate formulae for load along axis, potential strain for free hygrothermal expansion and periodic solution are established for small as well as large angle of rotation at the end of the beam. Illustrative examples are selected and compared to "reference" solution obtained by the shooting method to substantiate the accuracy and correctness of the approximate analytical approach.

Nonlinear optimization algorithm using monotonically increasing quantization resolution

  • Jinwuk Seok;Jeong-Si Kim
    • ETRI Journal
    • /
    • v.45 no.1
    • /
    • pp.119-130
    • /
    • 2023
  • We propose a quantized gradient search algorithm that can achieve global optimization by monotonically reducing the quantization step with respect to time when quantization is composed of integer or fixed-point fractional values applied to an optimization algorithm. According to the white noise hypothesis states, a quantization step is sufficiently small and the quantization is well defined, the round-off error caused by quantization can be regarded as a random variable with identically independent distribution. Thus, we rewrite the searching equation based on a gradient descent as a stochastic differential equation and obtain the monotonically decreasing rate of the quantization step, enabling the global optimization by stochastic analysis for deriving an objective function. Consequently, when the search equation is quantized by a monotonically decreasing quantization step, which suitably reduces the round-off error, we can derive the searching algorithm evolving from an optimization algorithm. Numerical simulations indicate that due to the property of quantization-based global optimization, the proposed algorithm shows better optimization performance on a search space to each iteration than the conventional algorithm with a higher success rate and fewer iterations.