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Abstract

We propose a quantized gradient search algorithm that can achieve global

optimization by monotonically reducing the quantization step with respect to

time when quantization is composed of integer or fixed-point fractional values

applied to an optimization algorithm. According to the white noise hypothesis

states, a quantization step is sufficiently small and the quantization is well

defined, the round-off error caused by quantization can be regarded as a ran-

dom variable with identically independent distribution. Thus, we rewrite the

searching equation based on a gradient descent as a stochastic differential

equation and obtain the monotonically decreasing rate of the quantization

step, enabling the global optimization by stochastic analysis for deriving an

objective function. Consequently, when the search equation is quantized by a

monotonically decreasing quantization step, which suitably reduces the

round-off error, we can derive the searching algorithm evolving from an opti-

mization algorithm. Numerical simulations indicate that due to the property

of quantization-based global optimization, the proposed algorithm shows bet-

ter optimization performance on a search space to each iteration than the con-

ventional algorithm with a higher success rate and fewer iterations.
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1 | INTRODUCTION

Recently, as artificial intelligence based on deep neural
networks has shown successful results in several fields,
many researchers have vigorously investigated learning
algorithms induced by nonlinear optimization. In partic-
ular, in contrast to other applications, such as image rec-
ognition based on big data using algorithms based on
stochastic gradient descent, many applications of artifi-
cial intelligence still use conventional optimization

algorithms directly. Reinforcement learning is one promi-
nent example of such applications.

Another viewpoint in contrast to the researching field
is the requirement of artificial intelligence in tiny elec-
tronic devices (such as cell phones), innovative sports-
wear, and industrial control systems. Such hardwares
typically have a small amount of computing power for
minimizing power consumption. Nevertheless, users
demand artificial intelligence that allows them to operate
on such tiny computing devices. For developing such
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artificial intelligence systems, a fast optimization algo-
rithm under small computing power is required [1–3].

A quantized optimization algorithm is one of the
methodologies satisfying such requirements, and we
expect it to maintain optimization performance with
comparably limited computing power. The Hogwild-style
algorithm [4] fundamentally analyze the quantized
machine learning based on an optimization theory. As
the most extremely quantized algorithm, [5,6] provided
the 1-bit quantization satisfying a strong convergence
condition. In terms of increasing communication effec-
tiveness of large-scale communication units, [7] proposed
a quantized learning scheme considering the tradeoff
between communication, computational efficiency, and
convex optimization. However, as recent studies [8–10]
report challenges in using optimization algorithms based
on the SGD for machine learning, it is necessary to verify
the consistency of the conventional quantized optimiza-
tion algorithm.

Aiming at above mentioned challenges, we define a
quantization error and propose a quantized optimiza-
tion algorithm with weak convergence under the
assumption that the defined quantization error satisfies
the identically independent distribution condition.
Toward this, we analyze the convergence condition of
the proposed quantized optimization algorithm based
on the stochastic differential equation and transition
probability. In this analysis, we derive appropriate
quantization conditions that ensure the convergence of
the proposed algorithm using a schedule function for
quantization. Further, we establish that the provided
quantization condition ensures a global optimization
property on a search space for each iteration in the
viewpoint of distributional/weak convergence. Through
numerical experiments, we show that the performance
of the proposed algorithm is superior to conventional
search algorithms.

2 | DEFINITION AND ANALYSIS
OF QUANTIZATION

Before beginning discussion, we establish the following
definitions and assumptions:

Definition 1. For x �R, the round-off for
extraction of integral part is

xQ �bxcþϵ ðϵ�R½0,1ÞÞ, ð1Þ

where xQ �Z is an integral part of the real
number x.

Definition 2. The greatest integer function
or the Gauss function ½�� is defined as follows:

½x� � bxþ0:5c¼ xþ0:5�ϵ≜ xþε, ð2Þ

where ε�Rð�0:5,0:5� is round-off error.

Assumption 1. For an objective function f :
Rn !R with f ðxÞ�C2, there exists a positive
value m�R such that

m≜ inf
8x,v � Rn

1

kvk2 � ⟨v,
∂2f
∂x2

v⟩, ð3Þ

for all x,v�Rn.

2.1 | Fundamental definition of
quantization

The aim of this study is to extend a quantization error
to a temporal perspective. In other words, in the initial
stage, the proposed algorithm searches the optimal
point at a low resolution, and over time, it searches
the optimum point at a high resolution. Because
decreasing the variance of the quantization error to
the operation time ensures an increase in the resolu-
tion of quantization, we can control the resolution of
quantization by the time-dependent variance and
expect better optimization performance. For this rea-
son, it is necessary to redefine the fundamental defini-
tion of quantization according to the Definitions 1 and
2, as follows:

xQ ≜
1
Qp

bQp � ðxþ0:5 �Q�1
p Þc¼ 1

Qp
½Qp �x��Q: ð4Þ

Rewriting (4) with the definition of quantization, we
obtain the following formulation, including the quantiza-
tion error.

xQ ¼ 1
Qp

½Qp �x� ¼
1
Qp

Qp � xþ ε
� �¼ xþ εQ�1

p : ð5Þ

In (5), we replace the constant quantization parameter
Qp with a monotonically increasing quantization parame-
ter with respect to time t, such as QpðtÞ. Thus, we obtain
the quantization error term as a monotonically decreas-
ing function for time t.
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In addition, Jimenes and others [11] proved that the
quantization error is a white noise through asymptotic
analysis, if the quantization error is an asymptotically
pairwise independent and uniformly distributed within
the error bound. Intuitively, quantization must be uni-
form for the quantization error to follow a uniform distri-
bution. Therefore, we assume a uniform quantization
representing equal quantized resolution for all x �R at
the same time t �R without changing the quantized spa-
tial resolution. Moreover, from the engineering perspec-
tive and following the binary number system, we define
the quantization parameter as follows:

Qp ¼ η �bn η�Zþ, η< b, ð6Þ

where the base b is b�Zþ, b≥ 2. Under the above
assumptions and the proposition provided by Jimenes
and others [11], we employ the following theorem,
known as white noise hypothesis (WNH), without
proof.

Proposition 1. If the quantization of x is uni-
form quantization at t with the quantization
parameter defined as (4) and (6), the quanti-
zation error εQpðtÞ¼ xQ�x is white noise.

Consequently, when the quantization parameter is a
monotonically decreasing function with respect to time, the
quantization error is white noise with the monotonically
decreasing variance with respect to time. Furthermore, if
the quantization error of a parameter vector ensures WNH,
we consider the following independent assumption.

Assumption 2. For a x �Rn, and xQ �Rn,
we assume that the components of
the quantization error ε

!Qp ¼ xQ�x¼
fε0,ε1, :::,εn�1g�Rn are independent.

2.2 | Search equation providing the
quantized parameter vector

First, we define the parameter vector wt �Rn, a descent
direction hðwtÞ�Rn, and a search equation as follows:

wtþ1 ¼wt�λt �hðwtÞ, ð7Þ

where λt �Rð0,1Þ is a step size such that
λt ¼ argminλt � Rð0,1Þf ðwt�λt �hðwtÞÞ. Suppose that the
parameter vector of the current step wt and next step
wtþ1 are quantized, we have

wQ
tþ1 ¼ wQ

t � λt �hQðwtÞ
� �Q ¼wQ

t � λt �hQðwtÞ
� �Q

: ð8Þ

In (8), we set gðxÞ� λt �hðxÞ and quantize it according
to (5). Then, the quantized gðxÞ is

gðxÞQ ¼ 1
Qp

bQpðgðxÞþ ε
!Q�1

p Þc¼ 1
Qp

�QpgðxÞþ εtQ
�1
p , ð9Þ

where ε is the vector-valued quantization error so that
the distribution of components are independent distribu-
tion defined ε�Rn.

If there exists a rational number αt �Qð0,QpÞ to fac-
torize gðxÞ such that gðxÞ¼ αthðxÞ, we have

gðxÞQ ¼ αt
Qp

�QphðxÞþ εtQ
�1
p : ð10Þ

Replacing hðxÞ with hðxÞ and substituting (10) in (8),
the quantized search equation is obtained as follows:

wQ
tþ1 ¼wQ

t �
αt
Qp

�Qp �hQðwtÞþ εtQ
�1
p

¼wQ
t �

αt
Qp

½Qp �hQðwtÞ� ∵ αt �Q:

Therefore, we can use mathematical induction to obtain
the search equation that provides the quantized parame-
ter vector for all steps t �N. In (11), if we set αt and Qp

appropriately to the rational number system based on (6),
we have the search equation suitable to a general hard-
ware based on the binary system, as follows:

wQ
tþ1 ¼wQ

t �2�ðn�kÞrf QðwtÞ, n,k�Zþ, n> k: ð11Þ

In (10), assuming that each component of ε
!
t �Rn is

equal to the round-off error and the quantization error
follows a uniform distribution, the deviation of the quan-
tization error is given as follows:

8 ε!t �Rn,EQ�2
p ε

!2
t ¼EQ�2

p � trðε!t ε
!T

t Þ¼
1

12 �Q2
p

�n: ð12Þ

For all t>0, t �R, when the deviation of the quantiza-
tion error is equal to (12) and a standard Wiener process
dBt �R, we set εtQ�1

p ds¼ q �dBt . Then,

Eε2t Q�2
p ds¼Eq2dB2

t ¼ q2ds) q¼
ffiffiffiffiffi
1
12

r
�Q�1

p : ð13Þ
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Similarly, we set a vector-valued Wiener proces dB
!

s ¼
ε
!ds�Rn and ε

!
tQ�1

p ds¼ q �dB!t. Then, the deviation of
the quantization error q is evaluated as q¼ ffiffiffiffiffiffiffiffiffiffi

n=12
p �Q�1

p .
When it holds, if we regard the deviation of the quantiza-
tion error as the function depending on time, the only
parameter that can be varied to the time index t is the
quantization parameter Qp. Therefore, we define it as a
function of time, as follows:

σðtÞ¼ n
24

�Q�2
p ðtÞ: ð14Þ

Consequently, because we can regard the quantized
weight vector wQ

t �Rn as a stochastic process fWtg∞t¼0,
the search (11) can be rewritten as a stochastic differen-
tial equation as follows:

dWs ¼�λt �hðWsÞdsþ εs
!Q�1

p ðsÞds

¼�λt �hðWsÞdsþ
ffiffiffiffiffi
n
12

r
Q�1
p ðsÞdBs

!

¼�λt �hðWsÞdsþ
ffiffiffiffiffiffiffiffiffiffiffi
2σðsÞp �dB!s:

ð15Þ

When the search algorithm is given as (15), the transi-
tion probability of the weight vector weakly converges to
the following Gibb’s distribution under suitable condi-
tions [12]. Moreover, when the deviation of Gibb’s distri-
bution is a monotonically decreased to zero, that is,
σðtÞ! 0, the transition probability of the weight vector
converges to the global minima of the objective function
f ðWtÞ [13]. It means that

lim
t"∞

σðtÞ¼ n
24

� lim
t"∞

Q�2
p ðtÞ¼ 0: ð16Þ

Equation (16) illustrates that with monotonically
decreasing deviation of the quantization error σðtÞ, the
quantization parameter increases monotonically and the
resolution of quantization increases with time. Conse-
quently, we claim that it is possible to find the global
minima or the best optimal point on a finite domain with
increasing resolution of quantization by increasing the
quantization parameter Qp under a suitable schedule
depending on the time index from a low resolution cau-
sed by a low Qp. In addition, we propose a feasible sched-
uling function for the resolution of quantization, given by
the following theorem:

TAB L E 1 The benchmark functions and corresponding difficulty scores for finding the global optimum

Benchmark Function Equation Known difficulty score

Ackley
f ðxÞ¼�a �exp �b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
d

Pd
i¼1x

2
i

q� �
�exp 1

d

Pd
i¼1cosðc � xiÞ

� �
þaþexpð1Þ 48.25

Whitley f ðxÞ¼ 1þ 1
4000

Pn
i¼1x

2
i �
Qn

i¼1cos
xiffi
i

p
� �

4.92

Rosenbrock 2D f ðxÞ¼Pd�1
i¼1 ½bðxiþ1� x2i Þ2þða� xiÞ2�, x�R2 44.17

Rosenbrock 100D f ðxÞ¼Pd�1
i¼1 ½bðxiþ1� x2i Þ2þða� xiÞ2�, x�R100 None

EggHolder f ðx,yÞ¼ 977�ðyþ47Þsin ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijyþ0:5yþ47jp� �
�x sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijx�ðyþ47Þjp� � 18.92

Xin-She Yang N.4 f ðxÞ¼ 2:0þ Pd
i¼1sin

2ðxiÞ�exp �Pd
i¼1x

2
i

� �� �
exp �Pd

i¼1sin
2
ffiffiffiffiffiffiffijxij

p� �
26.33

Rosenbrock Modification f ðxÞ¼ 74þ100ðx2�x21Þ2þð1� x1Þ2�400e�
ðx1þ1Þ2þðx2þ1Þ2

0:1
8.42

Salomon
f ðxÞ¼ 1�cos 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPd
i¼1x

2
i

q� �
þ0:1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPd
i¼1x

2
i

q 10.33

Drop-Wave
f ðx,yÞ¼ 1� 1þcos 12

ffiffiffiffiffiffiffiffiffi
x2þy2

p� �
ð0:5ðx2þy2Þþ2Þ

21.25

Powell D4 f ðxÞ¼Pd
i¼1jxijiþ1 32.58

Schaffel N. 2 f ðx,yÞ¼ 0:5þ sin2ðx2�y2Þ�0:5
ð1þ0:001ðx2þy2ÞÞ2

39.58

F I GURE 1 Conceptual diagram of quantization schedule
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F I GURE 2 Results of the successful trace to each algorithm for benchmark functions. For a fair comparison, we select search results of

a conventional and the proposed algorithms, both being successful in finding an optimal point. The blue line represents searching traces of

conventional algorithm and the green line represents those of proposed algorithm. Some conventional searching traces represent a straight

line and those look like the results of a single iteration. However, those took a number of iterations on the straight-like line. Alternatively,

the proposed algorithm with bent lines took fewer iterations than the conventional algorithm
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Theorem 1. If the search equation satisfies
(15) and (16), the stochastic process fWtg∞t¼0

generated by the search equation weakly con-
verges to the global minimum when the devia-
tion of the quantization error is given as follows:

inf
t≥ 0

σðtÞ¼ C
logðtþ2Þ , C �R,C> >0, ð17Þ

where C is a hyperparameter representing
the largest difference in the objective func-
tion, such as supwt � Df ðwtÞ� minwt � Df ðwtÞ,
on a domain D defined as wt �D�Rn.

3 | DECISION SCHEME OF THE
QUANTIZATION PARAMETER

Although we can use the appropriate scheduler provided
in Theorem 1 for finding the global minimum, it is
impossible to apply this scheduler directly to the quan-
tized search algorithm. Because the deviation σðtÞ is a
function proportional to QpðtÞ, which is an integer value,
the deviation evaluated by (17) is not coincidental with
the quantized search equation.

However, from the result of theorem 1, the optimal
deviation σðtÞ should satisfy σðtÞ≥ inf σðtÞ≜ c=logð2þ tÞ.
Besides, it is a monotonically decreasing function. In
addition, we let a supremum of σðtÞ, satisfying the

conditions for quantization (6) and (14), as another
monotonically decreasing function TðtÞ such that

C
logðtþ2Þ ≤ σðtÞ≤TðtÞ, ð18Þ

where TðtÞ is a monotonically decreasing function,
such as TðtÞ#0 with respect to t"∞. Moreover, when Δ is

F I GURE 2 (Continued)

TABL E 2 Input domain (represented with min and max per

components) and optimal point corresponding benchmark

functions

Benchmark
function Input domain Optimal point

Ackley ½�32,32� ½0,0�
Whitley ½�512,512� ½0,0�
Rosenbrock 2D ½�5,10� ½1,1�
Rosenbrock 100D ½�5,10� ½1,1, :::,1��R100

EggHolder ½400,600�, ½300,500� ½522:16,413:31�
Xin-She Yang N.4 ½�5,5� ½0, :::,0��R4

Rosenbrock
Modification

½�1:3,0:6� ½�0:91, �0:95�

Salomon ½�1,1� ½0,0�
Drop-Wave ½�1:0,1:0� ½0,0�
Powell D4 ½�1,1� ½0, :::,0��R4

Schaffel N. 2 ½�4,4� ½0,1:25�
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given as Δ� supx,y � Rnðf ðxÞ� f ðyÞÞ, TðtÞ has the
following properties:

d
dt
e�

2Δ
TðtÞ ¼ dTðtÞ

dt
� 1
T2ðtÞe

� 2Δ
TðtÞ ! 0 as t "∞: ð19Þ

Therefore, we obtain the schedule function σðtÞ�Q,
which has the infimum as the optimal schedule function
inf σðtÞ and the supremum as the monotonically decreas-
ing function for quantization TðtÞ. The schedule function
σðtÞ shown in Figure 1 satisfies (17).

TAB L E 3 Experimental results of benchmark functions with three gradient-based search algorithms using line search

Benchmark
Function Algorithm

Conventional
algorithm

Proposed
algorithm

Improvement
ratio of steps

Improvement
of succ. ratio

Final
step Success

Final
step Success

Ackley Gradient descent 8 43.0 3 49.0 62.50 13.95

Conjugate gradient 16 35.0 4 32.0 75.00 �8.57

Quasi newton (BFGS) 23 34.0 6 23.0 73.91 �32.35

Whitley Gradient descent 13 54.0 12 54.0 7.69 0.00

Conjugate gradient 9 53.0 7 53.0 22.22 0.00

Quasi newton (BFGS) 6 26.0 6 30.0 0.00 15.38

Rosenbrock 2D Gradient descent 3182 100.0 2427 95.0 23.73 �5.00

Conjugate gradient 1601 83.0 1220 81.0 23.80 �2.41

Quasi newton (BFGS) 47 87.0 49 89.0 -4.26 2.30

Rosenbrock 100D Gradient descent 6845 82.0 2685 80.0 60.77 �2.44

Conjugate gradient 4144 76.0 1262 76.0 69.55 0.00

Quasi newton (BFGS) 839 76.0 77 80.0 90.82 5.26

EggHolder Gradient descent 85 48.0 78 48.0 8.24 0.00

Conjugate gradient 113 32.0 111 33.0 1.77 3.13

Quasi newton (BFGS) 9 34.0 9 37.0 0.00 8.82

Xin-She Yang N.4 Gradient descent 17 3.0 10 32.0 41.18 966.67

Conjugate gradient 0 0.0 8 41.0 inf inf

Quasi newton (BFGS) 17 7.0 4 26.0 76.47 271.43

Rosenbrock Modification Gradient descent 7 11.0 8 12.0 �14.29 9.09

Conjugate gradient 40 23.0 46 30.0 �15.00 30.43

Quasi newton (BFGS) 7 8.0 10 8.0 �42.86 0.00

Salomon Gradient descent 6 18.0 1 17.0 83.33 �5.56

Conjugate gradient 5 18.0 1 18.0 80.00 0.00

Quasi newton (BFGS) 6 5.0 2 4.0 60.00 �20.00

Drop-Wave Gradient descent 5 5.0 2 4.0 60.00 �20.00

Conjugate gradient 5 4.0 1 4.0 80.00 0.00

Quasi newton (BFGS) 4 9.0 1 7.0 75.00 �22.22

Powell D4 Gradient descent 70 100.0 69 100.0 1.43 0.00

Conjugate gradient 68 100.0 65 100.0 4.41 0.00

Quasi newton (BFGS) 15 100.0 14 100.0 6.67 0.00

Schaffel N. 2 Gradient descent 9 66.0 10 63.0 �11.11 �4.55

Conjugate gradient 10 58.0 11 58.0 �10.00 0.00

Quasi newton (BFGS) 6 64.0 7 58.0 �16.67 �9.37

Average 44.30 46.73 32.48 0.18
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To complete the quantized learning process, we
define the quantization parameter QpðtÞ using a mono-
tonically decreasing function hðtÞ�Zþ with respect to t,
as follows:

QpðtÞ¼ η �bhðtÞ, such that hðtÞ "∞ as t "∞: ð20Þ

By virtue of (14), (18), and (20), the function of power
parameter hðtÞ contains the following supremum and
infimum:

1
2
logb

n
24 �η2 �TðtÞ

�1
� �

≤ hðtÞ≤ 1
2
logb

n logðtþ2Þ
24 �η2 �C

� �
: ð21Þ

To illustrate (21) briefly, we let n¼ 24, η¼ 1, and the
total number of datum to be 10b. In addition, we assume
that the time index t corresponds to one data. From the
time index assumption, because t is equal to τ �10b for an
arbitrary epoch τ, the supremum of hðtÞ is as follows:

hðtÞ≤ 1
2
logbC

�1ðbþ log τÞþδðtÞ, ð22Þ

where δðtÞ�R is an error corresponding to a remaining
term such that δðτÞ¼ logb 1þ ε=ðbþ logτÞ½ �1=2. If the
objective function is a probability distribution function,
the maximum value of C is 1 for Rn, and every 10b epoch
increases 1 bit of the resolution systematically.

In addition, for the quantized learning in a k-bit inte-
ger system, we can determine that the least significant bit
serves as the optimal point in the range associated with
C< b�k . Therefore, we design the virtual infimum of hðtÞ
satisfying quantized learning to be achieved on a low res-
olution for Rn and sufficiently large C at an initial stage.
Moreover, for sufficiently small C, hðtÞ caused quantized
learning to be processed on a high resolution near a feasi-
ble optimum after some time.

For instance, we suggest TðtÞ satisfying (16) for the
infimum of hðtÞ, as follows:

TðtÞ¼ b
2β
tþ2ð Þ � inf

t≥ 0
σðtÞ: ð23Þ

By (23), we can obtain the infimum of hðtÞ such that

hðtÞ≥ 1
2
logb

n
24 �η2 �TðtÞ

�1
� �

¼� β

tþ2
þ sup

t≥ 0
hðtÞ,

∵ sup
t≥ 0

hðtÞ¼ 1
2
logb

n logðtþ2Þ
24 �η2 �C

� �
,

ð24Þ

where α is a proportional constant, which controls the
increasing speed of hðtÞ as t increases. Because hðtÞ�Z
and hðtÞ>0, using an arbitrary small value γ>0, we
obtain a quantization parameter Qp based on the
infimum of hðtÞ, as follows:

QpðtÞ ¼ η �b � β
tþ2þ1

2logb
nlogðtþ2Þ
24�η2 �C

� �l m

∵ hðtÞ ¼ � β

tþ2
þ sup

t≥ 0
hðtÞ

	 

:

ð25Þ

Practically, we observe the vanishing gradient due to
the problem of significant figures caused by quantization
when hðtÞ is not sufficiently large. However, because the
proposed algorithm improves the resolution of quantiza-
tion by increasing the infimum of hðtÞ as t increases, the
vanishing gradient problem can be addressed through
quantization. In addition, when the norm of gradient is
zero or minute, we can increase hðtÞ while holding the
supremum of hðtÞ to address the issue.

4 | NUMERICAL EXPERIMENTS

We evaluated the performance of the proposed algorithm
with 10-benchmark functions represented in Table 1.

The following are the 10-benchmark functions we
selected: the Rosenbrock, Ackley, Whitley, and Powell
functions, which are traditional test functions, and six
recently developed test functions, which are rated diffi-
cult to find the optimal point. In addition, to evaluate the
performance of the proposed algorithm for high-order
optimization problems, we tested with 100-dimensional
Rosenbrock and 4-dimensional Xin-She-Yang and Powell
functions. Figure 2 presents the diagram of each bench-
mark function and trace plots to each tested algorithm
around the optimal points. Table 1 shows the difficulty
scores in finding the global optimal point of each func-
tion, and Table 2 represents input domains and optimal
points with respect to each test function. The quantiza-
tion process starts at a 5-bit resolution and ends at a max-
imum of 17-bit resolution or less.

In experiments, we compared the proposed algorithm’s
search speed and performance with three conventional
gradient-based algorithms using a line search method
based on the Armijo-Wolf method. The conventional
algorithms are the general gradient descent, conjugate gra-
dient, and quasi-Newton with Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm, and we apply the proposed
quantization scheme to each gradient algorithm.

The line search algorithm effectively finds the mini-
mum point on the search line that appears as a gradient
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at every step. Therefore, the proposed algorithm performs
the optimal line search compared with the conventional
algorithm. As a result, the proposed algorithm increases
the search speed even though its search performance is
similar to that of the conventional searching algorithm
without degradation by quantization error. Table 3 shows
that global optimization performance is slightly better
despite performance degradation caused by the quantiza-
tion error, and the performance speed is improved by
approximately 30% or more.

5 | CONCLUSION

We proposed a quantized gradient-based searching algo-
rithm that can reduce the operation time by monotoni-
cally reducing the quantization step with respect to time
without degrading optimization performance. We derived
the quantization schedule based on weak convergence
and evaluated appropriate quantization parameters. The
proposed algorithm is more suitable for various embed-
ded systems because quantization is composed of fixed-
point fractional values. Consequently, it is possible to
develop a large-scale parallel optimizer in an embedded
system effectively for machine learning with limited com-
putational capacitance.

The numerical experimental results for nonlinear
benchmark functions show that the proposed algorithm
achieves a fast searching speed without degrading
optimization performance by quantization error. As a
result, it is possible to apply the proposed algorithm to a
general optimization field, such as reinforcement
learning, as future work. Moreover, we will develop high-
performance algorithms in embedded systems by exploi-
ting better quantization step scheduling approaches.
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APPENDIX A

Supplementary assumptions and lemmas
Assumption 3. For wt �Boðx ∗ ,ρÞ, there exists a positive
value L with respect to a scalar field f ðxÞ :Rn !R such
that

kf ðxtÞ� f ðx ∗ Þk≤Lkxt� x ∗ k, 8t> t0, ðA1Þ

where Boðx ∗ ,ρÞ is an open ball Boðx ∗ ,ρÞ¼
fxjkx�x ∗ k< ρg.

Lemma 1. For all x �R,

ð1�xÞ≤ expð�xÞ: ðA2Þ

Proof. By definition of the exponent, we write the expo-
nential function as the following fundamental series:

expð�xÞ¼
X∞
i¼0

1
i!
ð�1Þixi ¼

X∞
k¼0

1
2k!

x2k� 1
ð2kþ1Þ!x

2kþ1

� �
:

ðA3Þ

Let uk be uk ¼ð1=2k!Þx2k 1�ð1=2kþ1Þxð Þ, and then we
rewrite the series of exponent such that

expð�xÞ¼ u0þ
X∞
k¼1

uk: ðA4Þ

For all k>0, because each uk is positive, we have

1�x¼u0 ≤u0þ
X∞
k¼0

uk: ðA5Þ

□

Proofs of Theorem 1
Proof. For the proof of the theorem, we depend on the
lemmas in the works of [14]. First, we prove the follow-
ing convergence of the transition probability:

lim
τ!∞

sup
wt ,wtþτ � Rn

kpðt,wt, tþ τ,w ∗ Þ�pðt,wt, tþ τ,w ∗ Þk¼ 0,

ðA6Þ
where t and τ are the epoch index and iteration to a sin-
gle data index, respectively. w ∗ represents an optimal
weight vector when the proposed algorithm selects a fea-
sible learning rate. Let the infimum of the transition
probability from t to tþ1 such that

δt ¼ inf
x,y � Rn

pðt,x, tþ1,yÞ ðA7Þ

Following the lemma in [14], the upper bound of (A6) is
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lim
τ!∞

sup
wt ,wtþτ � Rn

kpðt,wt, tþ τ,w ∗ Þ�pðt,wt, tþ τ,w ∗ Þk

≤ 2kw ∗ k∞
Y∞

k¼0
ð1�δtþkÞ:

ðA8Þ

From the exponential approximation lemma (A2), we
rewrite (A8), as follows:

lim
τ!∞

sup
wt ,wtþτ � Rn

kpðt,wt, tþ τ,w ∗ Þ�pðt,wt, tþ τ,w ∗ Þk

≤ 2kw ∗ k∞exp �
X∞
k¼0

δtþk

!!
:

ðA9Þ

In this study, to obtain the bound of δtþk, we rewrite the
stochastic differential form derived from (15), as follows:

dWs ¼�rHðWsÞdsþσðsÞ
ffiffiffiffi
G

p
dBs, s�Rðt, tþ1Þ, ðA10Þ

where σðsÞ≜Q�1
p ðsÞ, G¼ n

12, and rHðWsÞ¼ λsrf ðWsÞ.
Define a domain Fff : ½t, tþ1�!Rn, f �C2g. Let Px be
the probability measures on F induced by (A10) and Qx

derived by the following equation:

dW τ ¼ σðτÞ
ffiffiffiffi
G

p
dBτ, τ�Rðt, tþ1Þ: ðA11Þ

Following the Girsanov theorem [15,16], we obtain

dPw

dQw
¼ exp½

ðtþ1

t

G�1

σ2ðτÞ⟨�rHðW τÞ,dW τ⟩

�1
2

ðtþ1

t

G�1

σ2ðτÞkrHðW τÞk2dτ�:
ðA12Þ

To compute the upper bound of (A12), we will evaluate
the upper bound of krHk. However, because kGk does
not depend on the time index s, we regard it as a constant
value for all s. By definition, because the objective func-
tion is continuous, the gradient of HðwsÞ fulfills the
Lipschitz continuous condition (A1) as well. Therefore,
for wt �Boðw ∗ ,ρÞ, there exists a positive value L0 such
that

krf ðwτÞ�rf ðw ∗ Þk≤L0kwτ�w ∗ k, 8τ>0: ðA13Þ

Successively, if the objective function f ðxÞ is strictly con-
vex, the Lipschitz condition takes the following form:

krHðwtÞk≤L0λtρ¼C0: ðA14Þ

Consequently, for all s�R½t, tþ1Þ, we compute the upper
bound of the first term in the exponential function, as
follows:

ðtþ1

t

G�1

σ2ðsÞ⟨rHðWsÞ,dWs⟩
����

����
≤
ðtþ1

t

G�1

σ2ðsÞ⟨rHðWsÞ,dWs⟩
����

����
≤
ðtþ1

t

G�1
�� ��
σ2ðsÞ rHðWsÞk kσðsÞ

ffiffiffiffiffiffiffiffiffi
kGk

p
dBs

≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G�1
�� ��q
σðsÞ C0kBt�1

2
k≤ 1

σðsÞC0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G�1
�� ��q

ρþ1
2

� �
:

ðA15Þ

It implies that

ðtþ1

t

G�1

σðsÞ⟨�rHðW τ,XτÞ,dW τ⟩
����

����≤ C1

σðsÞ , ðA16Þ

where C1 is a positive value such that

C1 >C0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G�1
�� ��q

ρþ1=2ð Þ.
In addition, the upper bound of the second term is

1
2

ðtþ1

t

G�1

σ2ðsÞkrHðWsÞk2dτ
����

����
≤
1
2

ðtþ1

t

kG�1k
σ2ðsÞ krHðWsÞk2dτ

≤
1

2σ2ðsÞkG
�1k �C2

0 ≤
C2

2σ2ðsÞ , ∵C2 > kG�1k �C2
0:

ðA17Þ

By assumption, because σðsÞ is a monotonically decreas-
ing function, the supremum of σðsÞ is σð0Þ for
all s�R½0,∞Þ, that is, sups � R½0,∞�σðsÞ¼ sð0Þ. With the
supremum of each term in (A12), we obtain the lower
bound of the Radon-Nykodym derivative (A12) such that

dPw

dQw
≥ exp � 1

σðsÞ C1þ C2

2σðsÞ
� �� �

≥ exp � C3

σðsÞ
� �

, ðA18Þ

where C3 > 2σð0ÞC2þC1.
Consequently, for any ε>0 and wt,w ∗ �Rn, the
infimum of PwðjWtþ1�w ∗ j< εÞ is
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PwðjWtþ1�w ∗ j< εÞ≥ exp � C3

σðsÞ
� �

QwðjWtþ1�w ∗ j< εÞ:
ðA19Þ

Because Qw is a normal distribution based on (A11), we
have

PwðjWtþ1�w ∗ j< εÞ≥ exp � C3

σðsÞ
� �

�

ð
kx�w ∗ k< ε

1

σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π
ðtþ1

t
Gdτ

s exp �ðx�w ∗ Þ2

2
ðtþ1

t
Gdτ

0
BB@

1
CCAdx

≥ exp � C3

σðsÞ
� �

�ð
kx�w ∗ k< ε

1

σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πkGk

ðtþ1

t
dτ

s

exp �
ffiffiffi
ρ

p þ ε
� �2
2kGk

ðtþ1

t
dτ

0
BB@

1
CCAdx

≥ exp � C3

σðsÞ
� �

1

σð0Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πkGkp

exp �
ffiffiffi
ρ

p þε
� �2
2kGk

 ! ð
kx�w ∗ k< ε

dx

≥ exp � C3

σðsÞ
� �

1

σð0Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πkGkp 1þ

ffiffiffi
ρ

p þ ε
� �2
2kGk

 !
2ε

≥ exp � C3

σðsÞ
� �

�C4 � ε, ∵C4 ¼
ffiffiffi
2

p

σð0Þ ffiffiffiffiffiffiffiffiffiffiffi
πkGkp :

ðA20Þ

Finally, we obtain the lower bound of the transition prob-
ability such that

δt ¼ inf
x,y � Rn

pðt,x, tþ1,yÞjx¼wt , y¼w ∗

¼ inf
x,y � Rn

lim
ε!0

1
ε
PwðjWtþ1�w ∗ j< εÞ

≥ inf
x,y � Rn

lim
ε!0

1
ε
�C4 �exp � C3

σðsÞ
� �

� �ε

≥ exp � C5

σðsÞ
� �

, ∵C5 >C3þσð0Þ � jln C4j:

Therefore, if there exists a monotonically decreasing
function such that σðsÞ≥ C5

logðtþ2Þ, the convergence condi-
tion derived by (A9) is satisfied such that

X∞
k¼0

δtþk ¼∞, 8k≥ 0: ðA21Þ

□
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