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A NOTE ON THE OSCILLATION CRITERIA OF SOLUTIONS TO
SECOND ORDER NONLINEAR DIFFERENTIAL EQUATION

Yong K1 Kim

1.Introduction

Consider a solution y(t) of the nonlinear equation

(E) y" + f(t,y) = 0.

A solution y(t) is said to be oscillatory if for every T > 0 there exists tg > T
such that y(to) = 0. Let F be the class of solutions of (E) which are indefinitely
continuable to the right, i.e. y € F implies y(t) exists as a solution to (E) on some
interval of the form [t,, o).

Equation (E) is said to be oscillatory if each solution from F' is oscillatory.
If no solutoin in F is oscillatory, equation (E) is said to be nonoscillatory. In
[2], F.V.Atkinson treated the case f(t,z) = a(t)z?"~1, with a(t) continuous and

positive, and n > 1. For this particular equation, he showed that (E) is oscillatory
if and only if

/0 ” ta(t)dt = oo.

A number of authers have related the oscillation properties of second-order dif-
ferntial equation to the oscillation of solutions of third -order differential equation.

We extend the results of Atkinson, also we are concerned with the nonoscillation
of solution of (E).

2. The case for the oscillation
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Theorem 2.1. Let f(t,z) be continuous on S = [0, 00) X (—00, ), with b(t)¢(z) >
f(t,z) 2 a(t)¢(z) for (t,x) in S, where

a) a(t) and b(t) are nonnegative locally integrable function,

b) ¢(z) and ¢(z) are nondecreasing, with z¢(z) > 0 and zy(z) > 0 for = # 0,

on (—00,0), '
and for some a > 0,

-0

[ T < 0o, [ B du < oo

-a

Then equation (E) is oscillatory if and only if
oo o0
/ ta(t)dt = / tb(t)dt = oo.
0 0

Proof. Suppose that (E) has a nonoscillatory solution y(t), from the class F,
say y(t) > 0 for ¢t > T . Then, forT < s <*t,

J(t) - y'(s) = — / £y y(w))ds < 0 1)

and so y'(t) is nonincreasing. This, and the fact that y(t) > 0, implies that
lim; 00 y'(t) = L exists, where 0 < L < 00. Let t — oo in (1) to get, for s > T,

v =+ [ " y(u))du 2 / "~ Fu, y(w))du > 0.

Integrating from s=T to s=t, we obtain

u(t) > y(t) - y(T) 2 /T 3 / " f(u, y(w))duds > ]T (4 = T f(u, () du,

which implies that

y(t) > /T (u = T)a(u) $(y(1) )du. @)
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From the monotonicity of ¢, we have

B(u(D)4( /T (4 = T)a(u)d(y(w))du]™ > 1,

and if we multipliy by (¢t — T')a(t) and integrate from 7 to s, we get, after a change
of variable on the left,

U s
/ [$(u) " )du > / (t = T)a(t)dt 3)
L r

where L = [1.(u — T)a(u)¢(y(u))du, U = f;(u — Ta(u)g(y(u))du.

If, by an appropriate choice of v , we can make L > « , then the left hand side
of (3) is bounded above for all s > v, hence [~ ta(t)dt > oo.

If this is not possible, then for all v > T,

a> [ - Doty 2 pu(T) [ - Datwids,

and the result again follows.

For the case when y(t) < 0 for ¢t > T, the procedure is the same, the charges in
detail being that y'(t) goes to a finite nonpositive limit, the inequalities (1) through
(2) are reserved while the inequality (3) is in the same direction, and a(t) and ¢(z)
are replaced in (2) and (3) by b(¢) and ¥(z) .

To prove the other half of the theorem, we must show that if either f0°° ta(t)dt <
oo or f0°° tb(t)dt < oo, then (E) has a nonoscillatory solution. Suppose fo°° th(t)dt <
o0 ,and consider the equation

v =1- | " (s = £)£(s, y(s))ds. (4)

If (4) has a nonnegative continuous solution on some interval [T, 00), it is clear
that

y"(t) + f(t,y(t)) =0 on this interval.

Also, since the improper integral in (4) would converge, we would lim;—. y(t) =
1, that is, y(t) would be nonoscillatory.
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Let a positive integer T be chosen such that y(1) [ sb(s)ds >
We define, for N a positive integer, N > T, yn(t) =1 fort > N

yN(t)=1—/ (s-—t———l-)f(s,yN(s))ds for T<t<N.
t+4% N

This formula defines yx(t) succesivley on the intervals [N —k/N, N — (k—1)/N]
fork=1,2,..., N(N-T) ; hence yn(t) is defined on [T, 00). For N—1/N <t < o0,
we have

1
3

0< /t:(s —t = 1/N)f(s, yn (s))ds < ¢(1)/T°°sb(s)ds <

| =

hence 1/2 < yn(t) £ 1 on this interval. Any easy induction then shows that
1/2< yj(t) £ 1 on the interval [T, o0).
Consequently, for t > T,
o< o0 1
Ol = [ S <o) [ des <3
t+ 4 t+4

Since the family {yn(¢)} is equicontinuous and uniformly bounded on [T, c0), we
extract an uniformly convergent subsequence {yx(t)}, limg—oo yx(t) = y(t).
We now choose any large real number B, and write

y(t) =1— /B (s —t— ]—V%?))f(s,yk(s))ds + ¢(k, B),

t+(xeey)
where |e(k, B)| < ¢(1) [ sb(s)ds.

If we let £ — oo, we have

B
Lim inf e(k,B) <y(t)~1+ / (s —t)f(s,y(s))ds < lim sup e(k, B).
k—oo ¢ k—oo
If we now let B — 00, it is clear from the above bound on (%, B) that the liminf

and limsup terms go to zero, and so y(¢) satisfies equation(4).

For the case, [ ta(t)dt < co, we consider the integral equation

y(t) = -1~ / " (s = 1)f(s, y(s))ds,

and the procedure is the same, except that —1 < yx(¢t) < 0, and a(t)¢(zx) replaces

Yt)p(z).
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Corollary 2.2. Let f(t,z) be continuous on S, with zf(¢,z) > 0 for = # 0.

If |f(t,z)| = a(t)|é(z)| for (t,z) € S, where a(t) is locally integrable and con-
tinuous on [0, 00), while ¢(z) is nondecreasing , zé(z) > 0 for = # 0, on (—o0, ),
and

- 00

/oo[¢(u)]_1 < 00, [¢(u)] " du < oo, for some a > 0,

-
then [~ ta(t)dt = co = (E) is oscillatory.

Corollary 2.3. Let f(t,z) be continuous on S, with zf(¢,z) > 0 for = # 0.

K |f(t,2)| < a(t)|é(z)| for (¢,x) € S, where a(t) is locally integrable and contin-
uous on [0, 00), while ¢(z) is nondecreasing and z¢(z) > 0 for = # 0, on (—o0, 00),
then (E) is oscillatory = [, ta(t)dt = oo.

These corollaries are obtained by closely examining which condition on f(,z)
are used in the two halves of Theorem 2.1. The importance of the theorem and the
corollries lies in the fact that they show it is the global behavior of f(¢,x), rather
than its local behavior, which determines the oscillation properties of (E).

3. The case for the nonoscillation

We now establish a sufficient condition for the nonoscillation of (E) our restric-

tions on f(t,z) are more severe than in Theorem 2.1, though they are still gloval
rather than local.

Theorem 3.1. Let f(t,z) be continuous on S, with f;(t,z) defined and continuous
on S, and such that f(¢,0) =0, zf,(¢,2) < 0 and zf(t,z) > 0 for z # 0. Assume
that y(¢) = 0 is the only solution of (E) in the class F such that y(7) = y'(7) =0
for any 7 € [0,00). Furthermore, assume that for 0 < ¢t < 00, 0 < & < 00, we have
f(t,z) < a(t)¢(z), where a(t) is locally integrable, ¢(z) is nondecreasing and such
that, for some B > 0,

we have ¢(zy) < H(z)¢(y) for 0 < z < 00, B < y < oo with limp_o4 sup z7'H
(z) < oo. ‘

Then

/ #(t)a(t)dt < 0o = (E) is nonoscillatory.
0
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Proof. For any solution from the class F, y(t), defined on some interval [T, o), we
define

¥(?)
Vi) =y*+2 f@t,u)du > 0 on [T, 00).
0

Then "
y
Vit)y=2 fe(t,u)du > 0 on [T, o).
0

Thus V(t) is bounded above, and hence so is |y'(t)], say |y'(t)| < M for t € [T, 00).
Suppose y(t) is a solution from F that oscillates at t = 0o, and select a sequence of
points s — oo at which y(sx) =0, y'(sx) > 0. This is possible because no zero of
y(t) can be a zero of y'(t), hence one of tow consecutive zeros must be of the type
desired.

Let ¢ be the first zero of y'(t) on t > sk, and note that y(t) is positive and

increasing while y'(t) is positive and decr;asing on (sk,tk).
Since
tr te
0y = [ fuy@)de < [ alwulu))d,
Sk Sk

and
th

0<y(t)= / y'(u))du < y'(sk)t, for sp <t <ty

k

We have, from the monotonicity of ¢ ,

0<y'(sk) < / " 2wy’ (si Ju)du

Sk

< / ka(u)qS(Mu)du < H(M) / ka(u)sé(u)du (5)

k

for k large enough to make sx > B. Since, by hypothesis,

/;oo a(u)¢(u)du < oo,

the upper bound in (5) goes to zero as k — oo, hence y'(sx) — 0.
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From (5) it also follows that

0 < y/(si) < H(Y (s1)) / " a(w)d(u)du,

thus

1< [y ()™ < HY'(s0) / " a(w)é(u)du,

which yields the contradiction.
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