• 제목/요약/키워드: Nonlinear Structural Analysis

검색결과 2,292건 처리시간 0.025초

Semi-rigid connection modeling for steel frameworks

  • Liu, Yuxin
    • Structural Engineering and Mechanics
    • /
    • 제35권4호
    • /
    • pp.431-457
    • /
    • 2010
  • This article provides a discussion of the mathematic modeling of connections for designing and qualifying structures, systems, and components subject to monotonic or cyclic loading. To characterize the force-deformation behavior of connections under monotonic loading, a review of the Ramberg-Osgood, Richard-Abbott, and Menegotto-Pinto models is conducted, and it is shown that these nonlinear functions can be mathematically derived by scaling up or down a linear force-deformation function. A generalized four-parameter model for simulating connection behavior is investigated to facilitate nonlinear regression analysis. In order to perform seismic analysis of frameworks, a hysteretic model accounting for loading, unloading, and reloading is described using the established monotonic model. For preliminary analysis, a method is provided to quickly determine the model parameters that fit approximately with the observed data. To reach more accurate values of the parameters, the methods of nonlinear regression analysis are investigated and the modified Levenberg-Marquardt and separable nonlinear least-square algorithms are applied in determining the model parameters. Example case studies illustrate the procedure for the computation through the use of experimental/analytical data taken form the literature. Transformation of connection curves from the three-parameter model to the four-parameter model for structural analysis is conducted based on the modeling of connections subject to fire.

Stability Function을 이용한 공간 뼈대구조물의 기하학적 비선형해석 포뮬레이션 (Geometric Nonlinear Analysis Formulation for Spatial Frames using Stability Functions)

  • 윤영묵;박준우
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 가을 학술발표회 논문집
    • /
    • pp.201-207
    • /
    • 1998
  • In this study, a geometric nonlinear analysis formulation for spatial frames is developed using the 3D stability functions. For the formulation, the relationships of local and global coordinate systems in force, deformation, and the initial and current configurations of a frame are derived. The force-deformation relationship in global coordinate system is derived as well. The developed formulation is verified in each derivation by reducing the derived equations into 2D equations. The gradual plastification of connections and critical sections can be implemented effectively to this formulation for the complete second order inelastic advanced analysis of spatial frames.

  • PDF

파이버모델에 의한 철근콘크리트 구조물의 비선형 파괴해석 (Nonlinear Failure Analysis of Reinforced Concrete Structures using Fiber Model)

  • 송하원;김일철;변근주
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 봄 학술발표회 논문집
    • /
    • pp.127-134
    • /
    • 1998
  • The objectives of this paper is to analyze the reinforced concrete structures by using fiber model. In this study, the fiber modeling techniques including modeling of support conditions are studied. In order to verify the modeling techniques, analysis results obtained for reinforced concrete cantilever beam and reinforced concrete T-girder bridge under cyclic loading are compared with experimental results from full scale test. From the comparison, it is shown that the modeling techniques in this study can be well applied to the nonlinear failure analysis of reinforced concrete structures with porper modifications.

  • PDF

복합적층 쉘구조의 기하학적 비선형해석 (Geometrically Nonlinear Analysis of Laminated Composite Shell Structures)

  • 유승운
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.119-125
    • /
    • 1997
  • The finite element analysis of plate and shell structures has been one of the major research interests for many years because of the technological importance of such structures. Quite often these structures are constructed by laminated composites. This is due to the high specific stiffness and strength of composite structures. The main objective of this paper is to extend the use of an improved degenerated shell element to the large displacement analysis of plates and shells with laminated composites. The total Lagrangian approach has been chosen for the definition of the deformation and the solution to the nonlinear equilibrium equations is obtained by the Newton-Raphson method.

  • PDF

구조합성법을 이용한 비선형 탄성마운트 지지 구조물의 효율적인 동적 응답 해석 (Efficient Dynamic Response Analysis of Structures Supported By Nonlinear Resilient Mounts Using Structural Synthesis Method)

  • 정정훈;김병현;양용진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.287-290
    • /
    • 2000
  • An efficient dynamic response analysis method of structures supported by nonlinear resilient mounts when subjected to the transient base excitations is presented by using the structural synthesis method in time domain. Through a numerical example, the validity of the presented method is verified by comparison of the results with those of the 'traditional' analysis method.

  • PDF

실용적인 비선형 비탄성해석을 이용한 강구조 설계기술 (Design Technique of Steel Structures using Practical Nonlinear Inelastic Analysis)

  • 김승억;이동호;장은석
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.971-976
    • /
    • 2006
  • This paper presents a design technique of steel structures subjected to static and dynamic loadings using practical nonlinear inelastic analysis software. The beam-column approach using the stability functions and the plastic hinge concept enables the software to suitably predict second-order effects and inelastic behavior of beam-columns. For dynamic analysis. the incremental from of the equation of motion is solved by the use of a step-by-step numerical integration procedure in which the assumption of constant acceleration over a small time step is employed. The accuracy of the analysis program is validated using the results of ABAQUS program and experimental tests. A user-friendly graphic interface of the software is developed to facilitate the modeling process and result interpretation of the problem. A design example of large span bridge is presented to detail the direct design process using the practical advanced analysis software.

  • PDF

철근콘크리트깊은보의 탄소섬유압착공법에 대한 정적파괴실험 및 해석 (Structural Analysis and Static Load Test for The R/C Deep Beam with CFS Strengthening)

  • 조병완;김영진;김도
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 봄 학술발표회 논문집
    • /
    • pp.117-124
    • /
    • 1998
  • Static load tests were performed to propose the appropriate strengthening method of R/C deep beam using Carbon Fiber Sheets and compared to those of nonlinear structural analysis. Fiber direction and anchorage method on the deep beam specimen were chosen as experimental variables, which lead to the following conclusions that initial shear cracks are independent of strengthening method and fiber directions perpendicular to the expected fracture mode, which was given by the nonlinear structural analysis, show better performance compared to those of horizontal and vertical fiber directions.

  • PDF

Efficient parameters to predict the nonlinear behavior of FRP retrofitted RC columns

  • Mahdavi, Navideh;Ahmadi, Hamid Reza;Bayat, Mahmoud
    • Structural Engineering and Mechanics
    • /
    • 제70권6호
    • /
    • pp.703-710
    • /
    • 2019
  • While fiber-reinforced plastic (FRP) materials have been largely used in the retrofitting of concrete buildings, its application has been limited because of some problems such as de-bonding of FRP layers from the concrete surface. This paper is the part of a wide experimental and analytical investigation about flexural retrofitting of reinforced concrete (RC) columns using FRP and mechanical fasteners (MF). A new generation of MF is proposed, which is applicable for retrofitting of RC columns. Furthermore, generally, to evaluate a retrofitted structure the nonlinear static and dynamic analyses are the most accurate methods to estimate the performance of a structure. In the nonlinear analysis of a structure, accurate modeling of structural elements is necessary for estimation the reasonable results. So for nonlinear analysis of a structure, modeling parameters for beams, columns, and beam-column joints are essential. According to the concentrated hinge method, which is one of the most popular nonlinear modeling methods, structural members shall be modeled using concentrated or distributed plastic hinge models using modeling parameters. The nonlinear models of members should be capable of representing the inelastic response of the component. On the other hand, in performance based design to make a decision about a structure or design a new one, numerical acceptance should be determined. Modeling parameters and numerical acceptance criteria are different for buildings of different types and for different performance levels. In this paper, a new method was proposed for FRP retrofitted columns to avoid FRP debonding. For this purpose, mechanical fasteners were used to achieve the composite behavior of FRP and concrete columns. The experimental results showed that the use of the new method proposed in this paper increased the flexural strength and lateral load capacity of the columns significantly, and a good composition of FRP and RC column was achieved. Moreover, the modeling parameters and acceptance criteria were presented, which were derived from the experimental study in order to use in nonlinear analysis and performance-based design approach.

Nonlinear interaction behaviour of infilled frame-isolated footings-soil system subjected to seismic loading

  • Agrawal, Ramakant;Hora, M.S.
    • Structural Engineering and Mechanics
    • /
    • 제44권1호
    • /
    • pp.85-107
    • /
    • 2012
  • The building frame and its foundation along with the soil on which it rests, together constitute a complete structural system. In the conventional analysis, a structure is analysed as an independent frame assuming unyielding supports and the interactive response of soil-foundation is disregarded. This kind of analysis does not provide realistic behaviour and sometimes may cause failure of the structure. Also, the conventional analysis considers infill wall as non-structural elements and ignores its interaction with the bounding frame. In fact, the infill wall provides lateral stiffness and thus plays vital role in resisting the seismic forces. Thus, it is essential to consider its effect especially in case of high rise buildings. In the present research work the building frame, infill wall, isolated column footings (open foundation) and soil mass are considered to act as a single integral compatible structural unit to predict the nonlinear interaction behaviour of the composite system under seismic forces. The coupled isoparametric finite-infinite elements have been used for modelling of the interaction system. The material of the frame, infill and column footings has been assumed to follow perfectly linear elastic relationship whereas the well known hyperbolic soil model is used to account for the nonlinearity of the soil mass.

Life-cycle cost optimization of steel moment-frame structures: performance-based seismic design approach

  • Kaveh, A.;Kalateh-Ahani, M.;Fahimi-Farzam, M.
    • Earthquakes and Structures
    • /
    • 제7권3호
    • /
    • pp.271-294
    • /
    • 2014
  • In recent years, along with the advances made in performance-based design optimization, the need for fast calculation of response parameters in dynamic analysis procedures has become an important issue. The main problem in this field is the extremely high computational demand of time-history analyses which may convert the solution algorithm to illogical ones. Two simplifying strategies have shown to be very effective in tackling this problem; first, simplified nonlinear modeling investigating minimum level of structural modeling sophistication, second, wavelet analysis of earthquake records decreasing the number of acceleration points involved in time-history loading. In this paper, we try to develop an efficient framework, using both strategies, to solve the performance-based multi-objective optimal design problem considering the initial cost and the seismic damage cost of steel moment-frame structures. The non-dominated sorting genetic algorithm (NSGA-II) is employed as the optimization algorithm to search the Pareto optimal solutions. The constraints of the optimization problem are considered in accordance with Federal Emergency Management Agency (FEMA) recommended design specifications. The results from numerical application of the proposed framework demonstrate the capabilities of the framework in solving the present multi-objective optimization problem.