• Title/Summary/Keyword: Nonlinear Equation

Search Result 2,151, Processing Time 0.028 seconds

MULTIGRID METHOD FOR NONLINEAR INTEGRAL EQUATIONS

  • HOSAE LEE
    • Journal of applied mathematics & informatics
    • /
    • v.4 no.2
    • /
    • pp.487-500
    • /
    • 1997
  • In this paper we introduce a multigrid method for solving the nonliear Urysohn integral equation. The algorithm is derived from a discrete resolvent equation which approximates the continuous resolvent equation of the nonlinear Urysohn integral equa-tion. The algorithm is mathematically equivalent to Atkinson's adap-tive twogrid iteration. But the two are different computationally. We show the convergence of the algorithm and its equivalence to Atkinson's adaptive twogrid iteration. in our numerical example we compare our algorithm to other multigrid methods for solving the nonliear Urysohn integral equation including the nonlinear multigrid nethod introduced by hackbush.

Discrete Group Method for Nonlinear Heat Equation

  • Darania, Parviz;Ebadian, Ali
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.3
    • /
    • pp.329-336
    • /
    • 2006
  • In the category of the group theoretic methods using invertible discrete group transformation, we give a useful relation between Emden-Fowler equations and nonlinear heat equation. In this paper, by means of appropriate transformations of discrete group analysis, the nonlinear hate equation transformed into the class of the Emden-Fowler equations. This approach shows that, under the group action, the solution of reference equation can be transformed into the solution of the transformed equation.

  • PDF

Nonlinear dynamic behavior of functionally graded beams resting on nonlinear viscoelastic foundation under moving mass in thermal environment

  • Alimoradzadeh, M.;Akbas, S.D.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.6
    • /
    • pp.705-714
    • /
    • 2022
  • The aim of this paper is to investigate nonlinear dynamic responses of functionally graded composite beam resting on the nonlinear viscoelastic foundation subjected to moving mass with temperature rising. The non-linear strain-displacement relationship is considered in the finite strain theory and the governing nonlinear dynamic equation is obtained by using the Hamilton's principle. The Galerkin's decomposition technique is utilized to discretize the governing nonlinear partial differential equation to nonlinear ordinary differential equation and then the governing equation is solved by using of multiple time scale method. The influences of temperature rising, material distribution parameter, nonlinear viscoelastic foundation parameters, magnitude and velocity of the moving mass on the nonlinear dynamic responses are investigated. Also, the buckling temperatures of the functionally graded beams based on the finite strain theory are obtained.

A study on the Accurate Comparison of Nonlinear Solution Which Used Tangent Stiffness Equation and Nonlinear Stiffness Equation (접선 강성방정식과 비선형 강성방정식을 이용한 비선형 해의 정확성 비교에 관한 연구)

  • Kim, Seung-Deog;Kim, Nam-Seok
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.2
    • /
    • pp.95-103
    • /
    • 2010
  • This paper study on the accuracy improvement of nonlinear stiffness equation. The large structure must have thin thickness for build the large space structure there fore structure instability review is important when we do structural design. The structure instability of the shelled structure is accept it sensitively by varied conditions. This come to a nonlinear problem with be concomitant large deformation. Accuracy of nonlinear stiffness equation must improve to examine structure instability. In this study, space truss is analysis model Among tangent stiffness equation and nonlinear stiffness equation is using nonlinearity analysis program. The study compares an analysis result to investigate accuracy and convergence properties improvement of nonlinear stiffness equation.

  • PDF

State Equation Formulation of Nonlinear Time-Varying RLC Network by the Method of Element Decomposition (회전소자분해법에 의한 비선형시변 RLC 회로망의 상태방정식 구성에 대하여)

  • 양흥석;차균현
    • 전기의세계
    • /
    • v.22 no.2
    • /
    • pp.40-44
    • /
    • 1973
  • A method for obtaining state equation for nonlinear time-varying RLC networks is presented. The nonlinear time-varying RLC elements are decomposed by using Murata method to formulate nonlinear state equation. A nonlinear time-varying RLC network containing twin tunnel diode is solved as an example. In consequence of solving the examjple, simple methods are presented for revising the original network model so that the formulation of state equation is simplified.

  • PDF

APPLICATION OF ROTHE'S METHOD TO A NONLINEAR WAVE EQUATION ON GRAPHS

  • Lin, Yong;Xie, Yuanyuan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.3
    • /
    • pp.745-756
    • /
    • 2022
  • We study a nonlinear wave equation on finite connected weighted graphs. Using Rothe's and energy methods, we prove the existence and uniqueness of solution under certain assumption. For linear wave equation on graphs, Lin and Xie [10] obtained the existence and uniqueness of solution. The main novelty of this paper is that the wave equation we considered has the nonlinear damping term |ut|p-1·ut (p > 1).

TRAVELLING WAVE SOLUTIONS FOR SOME NONLINEAR EVOLUTION EQUATIONS

  • Kim, Hyunsoo;Choi, Jin Hyuk
    • Korean Journal of Mathematics
    • /
    • v.23 no.1
    • /
    • pp.11-27
    • /
    • 2015
  • Nonlinear partial differential equations are more suitable to model many physical phenomena in science and engineering. In this paper, we consider three nonlinear partial differential equations such as Novikov equation, an equation for surface water waves and the Geng-Xue coupled equation which serves as a model for the unidirectional propagation of the shallow water waves over a at bottom. The main objective in this paper is to apply the generalized Riccati equation mapping method for obtaining more exact traveling wave solutions of Novikov equation, an equation for surface water waves and the Geng-Xue coupled equation. More precisely, the obtained solutions are expressed in terms of the hyperbolic, the trigonometric and the rational functional form. Solutions obtained are potentially significant for the explanation of better insight of physical aspects of the considered nonlinear physical models.

MULTIPLICITY OF SOLUTIONS AND SOURCE TERMS IN A NONLINEAR PARABOLIC EQUATION UNDER DIRICHLET BOUNDARY CONDITION

  • Choi, Q-Heung;Jin, Zheng-Guo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.4
    • /
    • pp.697-710
    • /
    • 2000
  • We investigate the existence of solutions of the nonlinear heat equation under Dirichlet boundary conditions on $\Omega$ and periodic condition on the variable t, $Lu-D_tu$+g(u)=f(x, t). We also investigate a relation between multiplicity of solutions and the source terms of the equation.

  • PDF