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APPLICATION OF ROTHE’S METHOD TO A NONLINEAR

WAVE EQUATION ON GRAPHS

Yong Lin and Yuanyuan Xie

Abstract. We study a nonlinear wave equation on finite connected weig-

hted graphs. Using Rothe’s and energy methods, we prove the existence
and uniqueness of solution under certain assumption. For linear wave

equation on graphs, Lin and Xie [10] obtained the existence and unique-
ness of solution. The main novelty of this paper is that the wave equation

we considered has the nonlinear damping term |ut|p−1 · ut (p > 1).

1. Introduction

A graph is an ordered pair (V,E) with V being a set of vertices and E
being a set of edges. Let µ : V → (0,∞) be the vertex measure. Also, let
ω : V × V → (0,∞) be the edge weight function satisfying positivity and
symmetry, that is, ωxy > 0 and ωxy = ωyx for any xy ∈ E. We write y ∼ x if
xy ∈ E. Define

Dµ := max
{ 1

µ(x)

∑
y∼x

ωxy : x ∈ V
}
.

The quadruple G = (V,E, µ, ω) will be referred as a weighted graph. In this
paper, the graphs we consider are finite connected weighted.

Let C(V ) := {v : V → R}. Define the µ-Laplacian ∆ of v ∈ C(V ) by

∆v(x) =
1

µ(x)

∑
y∼x

ωxy
(
v(y)− v(x)

)
.

We denote the associated gradient form by

Γ(v1, v2)(x) =
1

2µ(x)

∑
y∼x

ωxy
(
v1(y)− v1(x)

)(
v2(y)− v2(x)

)
.
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Let |∇v|2(x) := Γ(v, v)(x), and |∇v|(x) be the length of Γ. Also, write∫
V

v dµ =
∑
x∈V

µ(x)v(x) for any v ∈ C(V ).

For any non-empty domain Ω ⊆ V , let

∂Ω := {y ∈ Ω : there exists x ∈ V \Ω such that xy ∈ E} and Ω◦ := Ω \ ∂Ω.

For any real function v on Ω◦, we extend v to V by letting v(x) = 0 for any
x ∈ V \Ω◦. Set ∆Ωv = (∆v)|Ω◦ , we call ∆Ω the Dirichlet Laplacian on Ω◦.
Then

∆Ωv(x) =
1

µ(x)

∑
y∼x

ωxy
(
v(y)− v(x)

)
on Ω◦,

where v vanishes on V \Ω◦. Clearly, the operator −∆Ω is positive and self-
adjoint (see [2, 14]).

Let p > 1 be a constant. For give functions f : [0,∞) × Ω◦ → R, and
g, h : Ω◦ → R, we study the problem

(1)


utt −∆Ωu+ |ut|p−1 · ut = f, t ≥ 0, x ∈ Ω◦,

u|t=0 = g, x ∈ Ω◦,

ut|t=0 = h, x ∈ Ω◦,

u = 0, t ≥ 0, x ∈ ∂Ω,

where f is continuous with respect to t.

Definition. We call u = u(t, x) a solution of (1) on [0, T ] × Ω if u is twice
continuously differentiable with respect to t, and (1) holds.

The problem (1) has been studied by Lions [11] who gave the existence
and uniqueness of solution on Rd. On metric graphs, Friedman and Tillich [1]
studied the wave equation whose Laplacian is based on the edge. Recently, the
authors [10] considered the linear wave equation on graphs, and obtained the
existence result of solution. The main difference between this paper and [10] is
that the problem (1) has the nonlinear damping term |ut|p−1 · ut. In this case,
it is much harder to study the existence of solution.

In recent years, various partial differential equations have also been exten-
sively studied on graphs. Using variational method, Grigoryan et al. [3–5]
gave existence results of the solution of Yamabe type equation, Kazdan-Warner
equation and some nonlinear equations. Lin and Wu [9] considered a semilinear
heat equation, and obtained the existence and nonexistence results of global
solution. For more relevant results, please refer to [6, 7] and their references.

In this paper, using Rothe’s method that was originally introduced by Rothe
[13] for the study of parabolic equation, we obtain the solution of (1) exists
globally. After 1930, using this method, many authors (e.g., [8, 12]) obtained
existence results for solutions to parabolic and hyperbolic equations.
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Now, we briefly introduced Rothe’s method. For any T > 0, divide [0, T ]
into n equidistant subintervals [ti−1, ti] with t0 = 0, tn = T and ti = iδ for
i ∈ Λ := {1, . . . , n}. For i ∈ Λ, let un,0, un,−1, fn,i be defined as in Subsection
3.1, and solve successively n equations

(un,i − 2un,i−1 + un,i−2)/δ2 −∆Ωun,i

+ (un,i − un,i−1)/δ ·
∣∣(un,i − un,i−1)/δ

∣∣p−1
= fn,i on Ω◦.

Using {un,i}i∈Λ, we can construct Rothe’s functions as following

u(n)(t, x) = un,i−1(x) + (t− ti) · (un,i(x)−un,i−1(x))/δ, i ∈ Λ and t ∈ [ti−1, ti].

Under certain assumption, we prove {u(n)(t, x)} converges to u, where u is a
solution of (1).

Throughout this paper, let CΩ◦ := C(Ω◦) > 0 be a constant depending only
on Ω◦. Similarly, let CΩ := C(Ω) > 0 and CΩ,p := C(Ω, p) > 0.

Assume that for positive constants γ and CΩ◦ , the following holds

(2) ‖f(s1, ·)− f(s2, ·)‖L2(Ω◦) ≤ CΩ◦ · |s1 − s2|γ for any s1, s2 ∈ [0,∞).

Now we state our main result.

Theorem 1.1. Let G = (V,E, µ, ω) be a finite connected weighted graph, and
let Ω ⊆ V be a domain satisfying Ω◦ 6= ∅. If (2) holds, then (1) has a unique
global solution.

We introduce Green’s formula and Sobolev embedding theorem in Section
2. Theorem 1.1 will be proved in Section 3.

2. Preliminaries

Let G = (V,E, µ, ω) be a finite connected weighted graph, and Ω ⊆ V be a
domain such that Ω◦ is non-empty.

Lemma 2.1 (Green’s formula, [2]). For any real functions w, v on Ω◦, we have∫
Ω◦

∆Ωw · v dµ = −
∫

Ω

Γ(w, v) dµ.

For q ∈ [1,∞), let Lq(Ω) is a space of all real-valued functions on V whose
norm ‖v‖Lq := {

∫
Ω
|v|q dµ}1/q is finite. For q =∞, denote

L∞(Ω) :=
{
v ∈ C(V ) : sup

x∈Ω
|v(x)| <∞

}
with norm ‖v‖L∞(Ω) = sup

x∈Ω
|v(x)|. It is easy to see that Lq(Ω) is a Banach

space. Moreover, L2(Ω) is a Hilbert space with the following inner product

(w, v) =

∫
Ω

w(x)v(x) dµ for w, v ∈ L2(Ω).

Let

W 1,2(Ω) := {v ∈ C(V ) :

∫
Ω

(|∇v|2 + |v|2) dµ <∞}
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with norm

(3) ‖v‖W 1,2(Ω) =
(∫

Ω

(|∇v|2 + |v|2) dµ
)1/2

.

Let C0(Ω) := {v ∈ C(Ω) : v = 0 on ∂Ω}. We complete C0(Ω) under the norm

(3) and denote the completed space by W 1,2
0 (Ω). Clearly W 1,2

0 (Ω) is a Hilbert
space under inner product

(w, v)W 1,2
0 (Ω) =

∫
Ω

(Γ(w, v) + wv) dµ for any w, v ∈W 1,2
0 (Ω).

Since Ω is finite, the dimension of W 1,2
0 (Ω) is finite. A graph G is said to be

locally finite if for any x ∈ V , #{y ∈ V : xy ∈ E} is finite. It is obvious that a
finite graph is locally finite. So we state the Sobolev embedding theorem (see
[3, Theorem 7]) for finite graph.

Theorem 2.2. Let (V,E) be a finite graph, and Ω ⊆ V be a domain satisfying

Ω◦ 6= ∅. Then W 1,2
0 (Ω) ↪→ Lq(Ω) for all q ∈ [1,∞]. Particularly, there exists

constant CΩ such that

‖v‖Lq(Ω) ≤ CΩ‖∇v‖L2(Ω) for all q ∈ [1,∞] and all v ∈W 1,2
0 (Ω).

Moreover, W 1,2
0 (Ω) is precompact, that is, a bounded sequence in W 1,2

0 (Ω) con-
tains a convergent subsequence.

3. Proof of Theorem 1.1

In this section, we show that there exists a unique global solution of (1). In
Subsection 3.1, we set up some priori estimates that will be used in the proof
of Theorem 1.1.

3.1. Some priori estimates

For any T > 0, let {ti}ni=0 be an equidistant partition of times interval [0, T ]
satisfying t0 = 0, tn = T , and ti = iδ for i ∈ Λ := {1, . . . , n}. Let

un,0(x) := g(x), un,−1(x) := g(x)− δh(x), fn,i(x) := f(ti, x) for i ∈ Λ, x ∈ Ω◦,

and un,0(x) = un,−1(x) = 0 on ∂Ω.

For p > 1, define the functional J1 from W 1,2
0 (Ω) to R as

J1(u) =

∫
Ω◦

(u− 4un,0 + 2un,−1)/δ2 · u dµ+

∫
Ω

|∇u|2 dµ

+ 2δ/(p+ 1) ·
∫

Ω◦
|(u− un,0)/δ|p+1 dµ− 2

∫
Ω◦
fn,1 · u dµ.

Lemma 3.1. J1(u) attains its minimum un,1 ∈ W 1,2
0 (Ω), and un,1 is the

unique solution of

(4)
(u− 2un,0 + un,−1)/δ2 −∆Ωu

+ |(u− un,0)/δ|p−1 · (u− un,0)/δ = fn,1 on Ω◦.
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Proof. This proof consists two parts.
Part 1. We show that J1(u) attains its minimum un,1 ∈ W 1,2

0 (Ω). Using
Hölder inequality, we obtain

J1(u) ≥
∫

Ω

|∇u|2 dµ+ 2δ/(p+ 1) ·
∫

Ω◦
|(u− un,0)/δ|p+1 dµ

−
∫

Ω◦
|(2un,0 − un,−1)/δ + δfn,1|2 dµ

≥−
∫

Ω◦
|g/δ + h+ δ · f(δ, x)|2 dµ,

and so J1 has a lower bound on W 1,2
0 (Ω). Further, infu∈W 1,2

0 (Ω) J1 is finite.

Taking a sequence of functions {uk} ⊆ W 1,2
0 (Ω) such that J1(uk) → a1 :=

infu∈W 1,2
0 (Ω) J1. That is, |J1 − a1| < ε1 for some ε1 > 0, and so∫

Ω

|∇uk|2 dµ ≤
∫

Ω◦
|g/δ + h+ δf(δ, x)|2 dµ+ a1 + ε1,

which, together with Theorem 2.2, yields uk is bounded in W 1,2
0 (Ω). Also, there

exist a function un,1 ∈W 1,2
0 (Ω) and a subsequence {ukj} such that ukj → un,1

in W 1,2
0 (Ω). Further, ‖ukj‖W 1,2(Ω) → ‖un,1‖W 1,2(Ω). Since∣∣‖ukj‖L2(Ω) − ‖un,1‖L2(Ω)

∣∣ ≤ ‖ukj − un,1‖L2(Ω) ≤ ‖ukj − un,1‖W 1,2(Ω),

we obtain

(5) ‖ukj‖2L2(Ω) → ‖un,1‖
2
L2(Ω) and ‖∇ukj‖2L2(Ω) → ‖∇un,1‖

2
L2(Ω).

Moreover, ukj → un,1 on Ω. Based on the above results, we get

J1(un,1) = lim
j→∞

J1(ukj ) = a1.

This proves that J1 attains its minimum un,1 ∈W 1,2
0 (Ω).

Part 2. We prove that un,1 is the unique solution of (4). For any ψ ∈
W 1,2

0 (Ω),

0 =
d

dη

∣∣∣
η=0
J1(un,1 + ηψ)

= 2

∫
Ω◦

(
(un,1 − 2un,0 + un,−1)/δ2 −∆Ωun,1

+
∣∣(un,1 − un,0)/δ

∣∣p−1 · (un,1 − un,0)/δ − fn,1
)
· ψ dµ.

This proves un,1 is a solution of (4).
Let un,1 and ŭ be two solutions of (4). Then for p > 1,

(6)
(un,1 − ŭ)/δ2 −∆Ω(un,1 − ŭ) +

∣∣(un,1 − un,0)/δ
∣∣p−1 · (un,1 − un,0)/δ

−
∣∣(ŭ− un,0)/δ

∣∣p−1 · (ŭ− un,0)/δ = 0 on Ω◦.
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Let x1, x2 ∈ Ω◦ such that

(un,1 − ŭ)(x1) = max
x∈Ω◦

(un,1 − ŭ)(x) and (un,1 − ŭ)(x2) = min
x∈Ω◦

(un,1 − ŭ)(x).

If maxx∈Ω◦(un,1 − ŭ)(x) ≥ 0, then

∆Ω(un,1 − ŭ)(x1) ≤ 0 and (un,1 − un,0)(x1) ≥ (ŭ− un,0)(x1),

and so(∣∣(un,1−un,0)/δ
∣∣p−1 ·(un,1−un,0)/δ−

∣∣(ŭ−un,0)/δ
∣∣p−1 ·(ŭ−un,0)/δ

)
(x1) ≥ 0.

This leads to

0 ≤ (un,1 − ŭ)(x1)/δ2

= −
(∣∣(un,1 − un,0)/δ

∣∣p−1 · (un,1 − un,0)/δ

−
∣∣(ŭ− un,0)/δ

∣∣p−1 · (ŭ− un,0)/δ
)

(x1) + ∆Ω(un,1 − ŭ)(x1)

≤ 0,

which yields

(un,1 − ŭ)(x1) = 0.

It follows that minx∈Ω◦(un,1 − ŭ)(x) ≤ 0, and hence

0 ≥ (un,1 − ŭ)(x2)/δ2

= −
(∣∣(un,1 − un,0)/δ

∣∣p−1 · (un,1 − un,0)/δ

−
∣∣(ŭ− un,0)/δ

∣∣p−1 · (ŭ− un,0)/δ
)

(x2) + ∆Ω(un,1 − ŭ)(x2)

≥ 0,

which yields

(un,1 − ŭ)(x2) = 0.

Thus, we get un,1 = ŭ on Ω◦.
If maxx∈Ω◦(un,1 − ŭ)(x) ≤ 0, then minx∈Ω◦(un,1 − ŭ)(x) ≤ 0. Similarly, we

get un,1 = ŭ on Ω◦. This completes the proof. �

Successively, for i ∈ Λ\{1}, consider the functionals Ji from W 1,2
0 (Ω) to R:

Ji(u) =

∫
Ω◦

(u− 4un,i−1 + 2un,i−2)/δ2 · u dµ+

∫
Ω

|∇u|2 dµ

+ 2δ/(p+ 1) ·
∫

Ω◦

∣∣(u− un,i−1)/δ
∣∣p+1

dµ− 2

∫
Ω◦
fn,i · u dµ.

Similarly, Ji attains its minimum un,i ∈W 1,2
0 (Ω), and un,i solves uniquely

(7)
(u− 2un,i−1 + un,i−2)/δ2 −∆Ωu

+ (u− un,i−1)/δ ·
∣∣(u− un,i−1)/δ

∣∣p−1
= fn,i on Ω◦.
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Let un,i(x) be the approximation of u(t, x), which is the solution of (1), at
t = ti. We denote

(8) wn,i(x) := (un,i(x)− un,i−1(x))/δ for i ∈ Λ ∪ {0},

(9) zn,i(x) := (wn,i(x)− wn,i−1(x))/δ for i ∈ Λ.

Then (4) and (7) become

(10) zn,i −∆Ωun,i + |wn,i|p−1 · wn,i = fn,i for i ∈ Λ.

Let DT = [0, T ]× Ω, DT,i := [ti−1, ti]× Ω and D̃T,i := (ti−1, ti]× Ω for i ∈ Λ.

We construct Rothe’s sequence {u(n)(t, x)} as below:

(11) u(n)(t, x) = un,i−1(x) + (t− ti) · wn,i(x) for (t, x) ∈ DT,i.

Also, we define the auxiliary functions

(12) w(n)(t, x) = wn,i−1(x) + (t− ti) · zn,i(x) for (t, x) ∈ DT,i,

and some step functions

(13) u(n)(t, x) =


un,i(x), (t, x) ∈ D̃T,i,

g(x), (t, x) ∈ [−δ, 0]× Ω◦,

0, (t, x) ∈ [−δ, 0]× ∂Ω,

(14) w(n)(t, x) =


wn,i(x), (t, x) ∈ D̃T,i,

h(x), (t, x) ∈ [−δ, 0]× Ω◦,

0, (t, x) ∈ [−δ, 0]× ∂Ω,

(15) f (n)(t, x) =


f(ti, x), (t, x) ∈ D̃T,i,

f(0, x), x ∈ Ω◦,

0, t = 0, x ∈ ∂Ω.

In order to show that Rothe’s sequence {u(n)(t, x)} is convergent, more pre-
cisely, the sequence converges to u(t, x), a solution of (1), we give some priori
estimates in the following lemma. From now on, we assume that (2) holds.

Lemma 3.2. There exist an integer N0 > 0 and positive constants CΩ and
CΩ,p such that for any n ≥ N0 and any i ∈ Λ,

(16)
‖wn,i‖2L2(Ω) + ‖∇un,i‖2L2(Ω) + ‖un,i‖2L2(Ω) + ‖wn,i‖2L2p(Ω) ≤ CΩ,

‖zn,i‖2L2(Ω) ≤ CΩ,p.

Proof. In view of assumption (2), we get

‖f(t, ·)‖2L2(Ω◦) ≤ CΩ◦T
2γ + c′ for any t ∈ [0, T ],
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where c′ := ‖f(0, ·)‖2L2(Ω◦). From (10), we get for any i ∈ Λ and any v ∈
W 1,2

0 (Ω), ∫
Ω◦

(zn,i −∆Ωun,i + |wn,i|p−1 · wn,i − fn,i) · v dµ = 0.

Substituting v = wn,i into the above equation, Lemma 2.1 implies that

(1− δ)
(
‖∇un,i‖2L2(Ω) + ‖wn,i‖2L2(Ω◦)

)
≤ ‖∇un,i−1‖2L2(Ω) + ‖wn,i−1‖2L2(Ω◦) + δ‖fn,i‖2L2(Ω◦).

Choosing an integer N0 > 0 such that δ < 1 for any n ≥ N0, we get

‖∇un,i‖2L2(Ω) + ‖wn,i‖2L2(Ω◦)

≤ (1− δ)−i
(
‖∇un,0‖2L2(Ω) + ‖wn,0‖2L2(Ω◦) + δ

i∑
k=1

(1− δ)k−1‖fn,k‖2L2(Ω◦)

)
≤ (1− δ)−n

(
‖∇un,0‖2L2(Ω) + ‖wn,0‖2L2(Ω◦) + δ

i∑
k=1

‖fn,k‖2L2(Ω◦)

)
≤ eT

(
‖∇un,0‖2L2(Ω) + ‖wn,0‖2L2(Ω◦) + T (CΩ◦T

2γ + c′)
)
≤ CΩ.

Theorem 2.2 implies that ‖un,i‖2L2(Ω◦) ≤ CΩ‖∇un,i‖2L2(Ω) ≤ C
2
Ω. Also,( ∫

Ω

|wn,i|2p dµ
)1/p ≤ C2

Ω

∫
Ω

|∇wn,i|2 dµ for p > 1.

Since ‖wn,i‖2L2(Ω) ≤ CΩ, we have |wn,i(x)| ≤
√
CΩ/µ0, and so∫

Ω

|∇wn,i|2 dµ ≤ 4DµCΩµ(Ω)/µ0,

where µ0 = minx,y∈Ω ωxy. This leads to

‖wn,i‖2L2p(Ω) ≤ 4DµC
3
Ωµ(Ω)/µ0.

The fact |∆Ωun,i(x)|2 ≤ Dµ|∇un,i(x)|2 implies that∫
Ω◦
|∆Ωun,i(x)|2 dµ ≤ CΩDµ.

It follows from (10) that

‖zn,i‖2L2(Ω) ≤ 2
(∫

Ω◦
|∆Ωun,i|2 dµ+

∫
Ω

|wn,i|2p dµ
)
≤ CΩ,p.

The proof of Lemma 3.2 is completed. �

According to Lemma 3.2, we get the following result.
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Lemma 3.3. For any t ∈ [0, T ], any n ≥ N0 and constants CΩ, CΩ,p, we have

(17)
‖u(n)(t, ·)‖L2(Ω) + ‖u(n)(t, ·)‖L2(Ω) + ‖w(n)(t, ·)‖L2(Ω)

+ ‖w(n)(t, ·)‖L2(Ω) + ‖w(n)(t, ·)‖L2p(Ω) ≤ CΩ,

(18) ‖w(n)
t (t, ·)‖L2(Ω) ≤ CΩ,p,

(19) ‖u(n)(t, ·)− u(n)(t, ·)‖L2(Ω) ≤ CΩ/n,

(20) ‖w(n)(t, ·)− w(n)(t, ·)‖L2(Ω) ≤ CΩ,p/n.

Lemma 3.4. There exist a function u ∈ L2(Ω) satisfying ut, utt ∈ L2(Ω), and

two subsequences {u(nk)}, {u(nk)} such that for any (t, x) ∈ DT ,

(a) u(nk) → u and u(nk) → u;

(b) w(nk) → ut and w(nk) → ut;

(c) w
(nk)
t → utt.

Proof. (a) Since ‖u(n)‖L2(Ω) and ‖u(n)‖L2(Ω) are bounded, we have

u(nk)(t, ·)→ u(t, ·), u(nk)(t, ·)→ u(t, ·) in L2(Ω)

for two subsequences {u(nk)}, {u(nk)} and two functions u, u. This leads to

(21) u(nk)(t, x)→ u(t, x), u(nk)(t, x)→ u(t, x) on DT .

Since u(nk), u(nk) ∈ W 1,2
0 (Ω), using (21), we have u = u = 0 on [0, T ]× ∂Ω. It

follows from (19) and (21) that

‖u(t, ·)− u(t, ·)‖2L2(Ω) = lim
k→∞

‖u(nk)(t, ·)− u(nk)(t, ·)‖2L2(Ω) = 0 on [0, T ].

Hence u = u on DT . This proves (a).

(b) Similar to (a), there exist two subsequences {w(nk)}, {w(nk)} and a
function w ∈ L2(Ω) such that

(22) w(nk)(t, x)→ w(t, x) and w(nk)(t, x)→ w(t, x) on DT .

Also, w = 0 on [0, T ] × ∂Ω. Note that for any t ∈ [ti−1, ti] ⊆ [0, T ] and any
x ∈ Ω◦,

u(nk)(t, x)− g(x)

=

∫ t1

0

u(nk)
s (s, ·) ds+ · · ·+

∫ ti−1

ti−2

u(nk)
s (s, ·) ds+

∫ t

ti−1

u(nk)
s (s, ·) ds

=

∫ t1

0

wn,1(·) ds+ · · ·+
∫ ti−1

ti−2

wn,i−1(·) ds+

∫ t

ti−1

wn,i(·) ds

=

∫ t

0

w(nk)(s, x) ds.
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Letting k →∞, we get

u(t, x)− g(x) =

∫ t

0

w(s, x) ds,

where we use ∫ t

0

w(nk)(s, x) ds→
∫ t

0

w(s, x) ds on [0, T ],

which follows from w(nk) is bounded on DT and Dominated Convergence The-
orem. Hence w = ut, u(0, x) = g(x) for x ∈ Ω◦ and ut = 0 on [0, T ]× ∂Ω.

(c) Similar to (a), there exists a subsequence {w(nk)
t } satisfying

w
(nk)
t (t, ·)→ utt on DT .

Also, ut|t=0 = h on Ω◦. In the proof, we use the fact that

(23)

∫ t

0

w(nk)
s (s, x) ds→

∫ t

0

u(nk)
ss (s, x) ds on DT .

�

Lemma 3.5. The following results hold:

(a)
∫ T

0
∆Ωu

(nk)(t, x) dt→
∫ T

0
∆Ωu(t, x) dt on Ω◦;

(b)
∫ T

0
|w(nk)(t, x)|p−1 · w(nk)(t, x) dt→

∫ T
0
|ut(t, x)|p−1 · ut(t, x) dt on Ω;

(c)
∫ T

0
f (nk)(t, x) dt→

∫ T
0
f(t, x) dt on Ω◦.

Proof. (a) It follows from (21) that ∆Ωu
(nk)(t, x)→ ∆Ωu(t, x) on [0, T ]×Ω◦. In

view of (17), we get ∆Ωu
(nk) is bounded on [0, T ]×Ω◦. Dominated Convergence

Theorem implies that (a) holds.
(b), (c) The proofs are the same as that of (a). �

3.2. Proof of Theorem 1.1

Using notation and results in Subsection 3.1, we prove our main theorem.
Proof of Theorem 1.1.
Existence.

In view of (10), we get for p > 1,∫ T

0

(zn,i −∆Ωun,i + |wn,i|p−1 · wn,i − fn,i) dt = 0 on Ω◦.

Combining this with (11)–(14), we obtain∫ T

0

(
w(n)
s (t, x)−∆Ωu

(n)(t, x)+|w(n)(t, x)|p−1·w(n)(t, x)−f (n)(t, x)
)
dt=0 on Ω◦.

Let u be the limit function in Lemma 3.4. Letting n = nk and taking the limits
as k →∞ in the above equation, Lemma 3.5 and (23) imply that∫ T

0

(
utt(t, x)−∆Ωu(t, x) + |ut(t, x)|p−1 · ut(t, x)− f(t, x)

)
dt = 0.
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From Lemma 3.4, we get the initial and boundary conditions of (1) hold. u is
a solution of (1) follows from the arbitrary of T .
Uniqueness.

Let u and ǔ be two solution of (1). Let ϕ := u− ǔ. Then for p > 1,
ϕtt −∆Ωϕ+ |ut|p−1 · ut − |ǔt|p−1 · ǔt = 0, t ≥ 0, x ∈ Ω◦,

ϕ|t=0 = 0, Ω◦,

ϕt|t=0 = 0, Ω◦,

ϕ = 0, t ≥ 0, x ∈ ∂Ω◦.

For t ∈ [0,∞), let

G(t) :=

∫
Ω

|∇ϕ(t, x)|2 dµ+

∫
Ω◦
|ϕt(t, x)|2 dµ.

Then G(0) = 0. Moreover,

G′(t) = 2

∫
Ω

Γ(ϕ,ϕt) dµ+ 2

∫
Ω◦
ϕt ·

[
∆Ωϕ−

(
|ut|p−1 · ut − |ǔt|p−1 · ǔt

)]
dµ

= −2

∫
Ω◦

(ut − ǔt) ·
(
|ut|p−1 · ut − |ǔt|p−1 · ǔt

)
dµ

≤ 0,

where we use the fact that for p > 1, (ut − ǔt) ·
(
|ut|p−1 · ut − |ǔt|p−1 · ǔt

)
≥ 0.

For any t ≥ 0, G′(t) ≤ 0 and G(0) = 0 imply that G(t) ≡ 0, and hence

∇ϕ ≡ 0 on [0,∞)× Ω and ϕt ≡ 0 on [0,∞)× Ω◦,

which together with ϕ(t, x) = 0 for t ≥ 0 and x ∈ ∂Ω and ϕ(0, x) = 0 for
x ∈ Ω◦, we have ϕ ≡ 0. Then u ≡ ǔ follows. �
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