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APPLICATION OF ROTHE’S METHOD TO A NONLINEAR
WAVE EQUATION ON GRAPHS

YONG LIN AND YUANYUAN XIE

ABSTRACT. We study a nonlinear wave equation on finite connected weig-
hted graphs. Using Rothe’s and energy methods, we prove the existence
and uniqueness of solution under certain assumption. For linear wave
equation on graphs, Lin and Xie [10] obtained the existence and unique-
ness of solution. The main novelty of this paper is that the wave equation
we considered has the nonlinear damping term |u¢ [P~ - uy (p > 1).

1. Introduction

A graph is an ordered pair (V,E) with V being a set of vertices and E
being a set of edges. Let p: V — (0,00) be the vertex measure. Also, let
w:V xV — (0,00) be the edge weight function satisfying positivity and
symmetry, that is, weyy > 0 and wyy = wy, for any zy € E. We write y ~ x if
zy € E. Define

D, = max{u(lx)yz;wxy tx € V}.

The quadruple G = (V, E, i, w) will be referred as a weighted graph. In this
paper, the graphs we consider are finite connected weighted.
Let C(V) := {v: V — R}. Define the p-Laplacian A of v € C(V') by

We denote the associated gradient form by

P(01,02)(2) = 3wy (01(y) — v1(2)) (v2(y) — v ().
2p()

y~z

Received June 8, 2021; Accepted November 3, 2021.

2020 Mathematics Subject Classification. Primary 35L05, 35R02, 58J45.

Key words and phrases. Rothe’s method, nonlinear wave equation, graph.

This work is supported by the National Science Foundation of China [12071245].

(©2022 Korean Mathematical Society

745



746 Y. LIN AND Y. XIE
Let |Vo|?(z) := T'(v,v)(z), and |[Vv|(z) be the length of T'. Also, write

/Vvdu = Z w(x)v(z) for any v € C(V).

zeV

For any non-empty domain 2 C V|, let
0 := {y € Q : there exists z € V\Q such that zy € E} and Q°:=Q\ 09.

For any real function v on Q°, we extend v to V by letting v(z) = 0 for any
x € V\Q°. Set Aqu = (Av)|go, we call Aq the Dirichlet Laplacian on Q°.
Then

b
p()

where v vanishes on V\2°. Clearly, the operator —Agq is positive and self-
adjoint (see [2,14]).

Let p > 1 be a constant. For give functions f : [0,00) x Q° — R, and
g,h: Q° = R, we study the problem

Agu(z) = szy (v(y) - ’U(I)) on 7,

y~z

Utt—AQU+|Ut|p_1'Ut:f, t207$€QO7

ult=0 = g, x €N,

(1) _ o
Utlt=0 = h, x €N,
u =0, t>0,z € 09,

where f is continuous with respect to t.

Definition. We call u = u(t,z) a solution of (1) on [0,7] x € if u is twice
continuously differentiable with respect to ¢, and (1) holds.

The problem (1) has been studied by Lions [11] who gave the existence
and uniqueness of solution on R%. On metric graphs, Friedman and Tillich [1]
studied the wave equation whose Laplacian is based on the edge. Recently, the
authors [10] considered the linear wave equation on graphs, and obtained the
existence result of solution. The main difference between this paper and [10] is
that the problem (1) has the nonlinear damping term |u;|[P~! - u;. In this case,
it is much harder to study the existence of solution.

In recent years, various partial differential equations have also been exten-
sively studied on graphs. Using variational method, Grigoryan et al. [3-5]
gave existence results of the solution of Yamabe type equation, Kazdan-Warner
equation and some nonlinear equations. Lin and Wu [9] considered a semilinear
heat equation, and obtained the existence and nonexistence results of global
solution. For more relevant results, please refer to [6,7] and their references.

In this paper, using Rothe’s method that was originally introduced by Rothe
[13] for the study of parabolic equation, we obtain the solution of (1) exists
globally. After 1930, using this method, many authors (e.g., [8,12]) obtained
existence results for solutions to parabolic and hyperbolic equations.
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Now, we briefly introduced Rothe’s method. For any 7' > 0, divide [0, 7]
into n equidistant subintervals [t;_1,t;] with ¢ = 0,t, = T and ¢; = i for
iteA:={1,...,n}. Fori € A, let u, 0,upn,_1, fn,i be defined as in Subsection
3.1, and solve successively n equations

(Uni — 2Un i1 + Uni2)/6% — Aqun;
F (Uns = Ui 1)/8 - | (Unss — tng1) /8| = fay on Q°.
Using {un,i}iea, we can construct Rothe’s functions as following
™ (t,2) = i1 (x) + (E—t;) - (Uni(T) —tUni_1(2))/0, i € Aand t € [t;_1,t;].
Under certain assumption, we prove {u(™(t,x)} converges to u, where u is a
solution of (1).
Throughout this paper, let Cqoe := C(Q2°) > 0 be a constant depending only
on Q°. Similarly, let Cq := C(Q) > 0 and Cq , := C(2,p) > 0.
Assume that for positive constants v and Cgqe, the following holds
(2) 1f(s1,-) = f(52,°)||L2(0) < Cao - |s1 — s2|7 for any s1, 52 € [0,00).
Now we state our main result.

Theorem 1.1. Let G = (V, E, u,w) be a finite connected weighted graph, and
let @ CV be a domain satisfying Q° # 0. If (2) holds, then (1) has a unique
global solution.

We introduce Green’s formula and Sobolev embedding theorem in Section
2. Theorem 1.1 will be proved in Section 3.

2. Preliminaries

Let G = (V, E, u,w) be a finite connected weighted graph, and Q C V be a
domain such that 2° is non-empty.

Lemma 2.1 (Green’s formula, [2]). For any real functions w,v on Q°, we have

Agw-vdu:—/f‘(w,v)du.

Qe Q

For g € [1,00), let LI(Q) is a space of all real-valued functions on V' whose
norm ||v||za == { [, [v]? dp}'/4 is finite. For ¢ = oo, denote

L(Q) :={v e C(V) : sup |v(z)| < o}
z€Q
with norm |[[v||e (o) = sup [v(z)|. It is easy to see that LI(£2) is a Banach
€N

space. Moreover, L?(f2) is a Hilbert space with the following inner product

(w,v) = /Qw(a:)v(x) dp  for w,v € L*(Q).

Let
W2(Q) = {v e C(V) /Q(|Vv|2 o) dp < oo}
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with norm
5 5 1/2
(3) lollwaoy = ([ (ol + of?) i)
Q

Let Cp(R2) :={v e C() : v =0 on IN}. We complete Cy(€2) under the norm
(3) and denote the completed space by W *(2). Clearly W,?(Q) is a Hilbert
space under inner product

(w,U)WOl,2(Q) = /Q(I‘(w,v) +wv)dp for any w,v € W, (Q).

Since §? is finite, the dimension of Wol’Q(Q) is finite. A graph G is said to be
locally finite if for any x € V, #{y € V : zy € E} is finite. It is obvious that a
finite graph is locally finite. So we state the Sobolev embedding theorem (see
[3, Theorem 7)) for finite graph.

Theorem 2.2. Let (V, E) be a finite graph, and Q CV be a domain satisfying
Q° # 0. Then Wy2() < LI(Q) for all ¢ € [1,00]. Particularly, there exists
constant Cq such that

0]l agey < CallVollrz) for all g € [1,00] and all v € Wy(9).
Moreover, Wol’2 (Q) is precompact, that is, a bounded sequence in VVOI’2 () con-

tains a convergent subsequence.

3. Proof of Theorem 1.1

In this section, we show that there exists a unique global solution of (1). In
Subsection 3.1, we set up some priori estimates that will be used in the proof
of Theorem 1.1.

3.1. Some priori estimates

For any T > 0, let {¢;}7_, be an equidistant partition of times interval [0, T]]
satisfying to =0, t, =T, and t; = id fori € A :={1,...,n}. Let
Un,0(x) = g(x), up,—1(z) = g(x) —0h(x), fni(x):= f(t;,z) for i € A,z € Q°,
and Uy o(z) = Uy, —1(x) = 0 on ON.

For p > 1, define the functional J; from Wy?(€2) to R as

Ji(u) :/ (u—4un’0+2un,,1)/62-ud,u—i—/ |Vul|? dp
o Q

+20/(p+ 1)-/

[(u— un,o)/5|p+1 dp — 2/ fn1 - udp.
Qo Qo

Lemma 3.1. Ji(u) attains its minimum u, € Wol’z(Q), and w1 is the
unique solution of

(u—2uno+ un7_1)/52 — Aqu

(4) 1 - 0
+ (U= un0) /0P - (u—upno)/d = fn1 on Q°.
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Proof. This proof consists two parts.
Part 1. We show that J; (u) attains its minimum wu,,; € Wy>(€). Using
Holder inequality, we obtain

Tiw) > / Vul? dp +26/(p+ 1) - / (=t 0) /3P ds
Q Qo
- / (o — i 1)/6 + 8 | ds

2—/ l9/6+ h+ 6 £(6,2) dp,
QO

and so J; has a lower bound on W&Q(Q) Further, infuewg*"’(fz) Jq is finite.

Taking a sequence of functions {uy,} C Wy>(Q) such that Jy(uy) — a; ==
infueWOl,Z(Q) Ji. That is, |J1 — a1] < €1 for some €; > 0, and so

[ IVuPdu< [ lg/5+h+s5G )P dutar+ e
Q Qo

which, together with Theorem 2.2, yields uy is bounded in I/VO1 2(Q) Also, there
exist a function u, 1 € Wol’Q(Q) and a subsequence {uy, } such that uy, — w1
in Wy(Q). Further, |jug, w120y — |[un,1llwi2(q). Since

|Hukj||L2(Q) - Hun,1||L2(Q)| < Hukj - “ml”LQ(Q) < H“kj - “ml”Wl'?(Q)v
we obtain
(5) ||Ukj||%2(9) - ||Un,1||%2(9) and Hvukj”%z(ﬂ) - ||Vun,1||2L2(Q)-
Moreover, ug; — uy, 1 on ). Based on the above results, we get

jl(un,l) = Jlgglo Jl(uk].) =aj.

This proves that J; attains its minimum wu,, ; € Wy*().
Part 2. We prove that w, 1 is the unique solution of (4). For any ¢ €
Wy (),
d

OZCTnL

= 2/ ((uml — QU 0 + Un,—1)/6° — Aqin 1

0.71(un,1 + 1)

+ ‘(un,l - Un,O)/é‘p_l . (un,l - un,O)/é - fn,l) : wd,u

This proves w1 is a solution of (4).
Let u,,1 and @ be two solutions of (4). Then for p > 1,

(1 — ) /6% = A (tny — @) + | (n1 = wn0)/6]""+ (Un1 = tn0)/6

@ " Anlin; :
_’(u_un,o)/(S’ (U —upp)/6=0 onQ°.
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Let x1, 29 € Q° such that

(tn,1 — W) (x1) = ;Ié%)g(un’l —a)(z) and (up1 —0)(x2) = ;relg%)(uml —u)(x).

If maxgeqo (un1 — @)(x) > 0, then
Ag(up,1 —u)(z1) <0 and  (up,1 — Un,0)(®1) > (& — uno)(71),
and so
(’(uml —1n0) /6] (1 = un0) /6 — ‘(ﬁ—umo)/é‘p_l.(a—umo)/é) (z1) > 0.
This leads to
0 < (upy — i)(21)/6%
= — (| = w0 /3" (1 = )/
— = un0) /61" (= n0)/6) (1) + A (1 — ) (1)
<0,
which yields
(uml - ﬂ)(l‘l) =0.
It follows that mingeqo (up,1 — @)(x) < 0, and hence
0 > (’U,n71 — fb)(.’EQ)/52
= — (| = w0 /3" (1 = )/
— (it = ) /67 (i — umo)/é) (22) + Aqy(tn1 — 1) ()
>0,

which yields
(tn,1 — @) (x2) = 0.
Thus, we get u, 1 =@ on Q°.
If maxgeqo (un,1 — @) (x) < 0, then mingeqo (up,1 — @)(x) < 0. Similarly, we
get u,1 = @ on 2°. This completes the proof. O

Successively, for i € A\{1}, consider the functionals J; from VVO1 2(Q) to R:
Ji(u) :/ (U — 4tp i1 + 2Up i) /6% - udp + / |Vul? du
Qo Q

—|—25/(p+1)-/ |(u—un7i_1)/6’p+1du—2/ fni - udp.
Qo Qo

Similarly, J; attains its minimum wu, ; € VVO1 -2 (©), and w,, ; solves uniquely
(u—2up ;-1 + un7i_2)/52 — Aqu

7 -1
( ) +(U_Un,i71)/6' ’(u—un,i,l)/(ﬂp :fn,i on 0°.
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Let wy,;(x) be the approximation of u(¢,z), which is the solution of (1), at
t = t;. We denote

(8) Wi (%) 1= (Uni(x) — Upi—1(x))/0  forie AU{0},

(9) Zni(2) = (Wni(z) — wpi—1(x))/6  forie A.
Then (4) and (7) become
(10) Zn,i T Aﬂun,i + |wn7i|p71 *Wn,i = fn,i for i € A.

Let DT = [O,T] X Q, DT,i = [tifl,ti] x € and ETJ; = (tifl,ti] x Q for i € A.
We construct Rothe’s sequence {u(™ (t,x)} as below:

(11) uw™ (t,2) = up i1 (x) + (t — ;) - wy4(x) for (t,2) € Dry.
Also, we define the auxiliary functions
(12) w™ (t,x) = w1 (x) + (t — ;) - zni(x)  for (t,2) € Dry,

and some step functions

unyi(x)v (t,.’E) € 5T,ia

(13) 7™ (t,x) = { g(x), (t,x) € [-6,0] x Q°,
0, (t,x) € [~6,0] x 9,
wn,l(x)7 (tvx) S BT,M

(14) w™(t,2) = { h(x), (t,z) € [-6,0] x Q°,
0, (t,2) € [=6,0] x 99,
f(tiax), (tax) € ET,’U

(15) F(t,2) = { £(0,2), z €0,
0, t=0,2 €90

In order to show that Rothe’s sequence {u(™)(¢,z)} is convergent, more pre-
cisely, the sequence converges to u(t,z), a solution of (1), we give some priori
estimates in the following lemma. From now on, we assume that (2) holds.

Lemma 3.2. There exist an integer Ny > 0 and positive constants Cq and
Cq,p such that for any n > Ny and any i € A,

||wn,z'||2L2(Q) + [[Vtn, %2(9) + [[un,il 2L?(Q) + Hwn,i||2L2p(Q) < Ca,

(16)
2n,illZ2(0) < Coyp-
Proof. In view of assumption (2), we get

Ilf (¢, ')H2L2(Q°) < CqoT?' 4+ ¢ for any t € [0,T],
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where ¢ := ||f(0,-)\|%2(90). From (10), we get for any ¢ € A and any v €
W (),

/ (Zn,i - Aﬂun,i + |wn,i|p71 *Wn,i — fn,i) v d.u =0.
S o

Substituting v = w,; into the above equation, Lemma 2.1 implies that

(1= 8) (IVun,ill72(0) + llwn,ill7200))
< I Vun,i-1llz2i) + lwni-1lZ2(a0) + 0l fnillZ2(0)-
Choosing an integer Ny > 0 such that § < 1 for any n > Ny, we get

IVtnill72 () + lwnill7z o)

A
e+ 31— O il ar))

k=1

<(1- (5)_i<||vun70”2L?(Q) + [lwn,o

IN

K3
(1= )" (IVtnol2 ) + llomolZacaey + 8 3 W tllBacan))
k=1

IN

e (IVn oll3 2 + 1m0
Theorem 2.2 implies that ||un7i||2L2(Qo) < C’Q\|Vun7¢||2L2(Q) < C3. Also,
([ bonildn) ™ < & [ [VuniPdu for p>1.
Q Q
Since ||wn,i|\2L2(Q) < Cq, we have |w, ;(z)| < /Ca/po, and so

[ 190 di < 4D, Cop() o,
where po = min, yeo wey. This leads to
lwn.illZ2p (o) < ADCEM(R)/ po-
The fact |Aquy i(z)]? < D,|Vu, i(x)]* implies that
/SO | At ()| ds < Co D,
It follows from (10) that
il < 2( [ 18P dut [ funi dis) < o,
The proof of Lemma 3.2 is completed. (]

According to Lemma 3.2, we get the following result.
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Lemma 3.3. For anyt € [0,T], any n > Ny and constants Cq, Cq p, we have

) 8, Mgy + 1 (1 2@y + [0 2o

(17)

+ |[@™ (¢, N2 + @™ (t, N irer) < Ca,
(18) o™ (¢, )l 20 < Cap,
(19) Ju™(t,) — @™t Nz < Ca/n,
(20) [w™(#, ) =™ (¢, )| L2() < Cap/n.

Lemma 3.4. There exist a function u € L*(Q) satisfying u;,uy € L*(Q), and
two subsequences {u")}, {@(™)} such that for any (t,x) € Dr,

(a) ul™) = u and ™) — u;

() w™) = w; and W) — uy;

(c) wﬁ"“ — Ugg.
Proof. (a) Since [|u(™| 12(q) and [[@™]|;2(q) are bounded, we have
for two subsequences {u(™)}, {@("*)} and two functions u,@. This leads to
(21) u™) (t,2) = u(t,z), w™)(t,x) = u(t,z) on Dr.

Since u(™), ") € Wy*(Q), using (21), we have u =7 = 0 on [0, T] x I Tt
follows from (19) and (21) that

lut, ) = 7(t, )2y = Jim [[u™(t ) =@ (@t )|Fai) =0 on [0,T).
Hence w = @ on Dr. This proves (a).

(b) Similar to (a), there exist two subsequences {w™*)}, {@wW(™)} and a
function w € L?(2) such that

(22)  w™)(t,2) > wt,2) and W™ (t,x) —» w(t,z) on Dr.

Also, w = 0 on [0,T] x 9Q. Note that for any ¢t € [t;—1,t;] C [0,7] and any
x € Q°,

ul™(t,z) - g(x)

tia t
ul™) (s, )ds + - -- —|—/ ul™) (s, ) ds—i—/ ul™) (s, ) ds

ti—o ti—1

I
_ /O“wn,1<.>ds+.-.+/t"1wm1<->ds+/t W i(-) ds
I

ti—2 ti—1

W) (s, x) ds.
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Letting £k — o0, we get

u(t,x) — g(x) = /0 w(s,x)ds,

where we use
‘ t
/w(nk)(s,x)ds%/ w(s,z)ds on [0,T],
0 0

which follows from @™*) is bounded on Dy and Dominated Convergence The-
orem. Hence w = uy, u(0,z) = g(x) for z € Q° and u; = 0 on [0, 7] x IN.
(c) Similar to (a), there exists a subsequence {wgn’“)} satisfying
’LUt(nk)(t, ) — Ut on Dr.

Also, ut|i=g = h on Q°. In the proof, we use the fact that
t t
(23) / w™) (s, ) ds %/ ul™) (s, x)ds on Dr. O
0 0

Lemma 3.5. The following results hold:
(a) fOT Aqu™) (t, x) dt — fOT Aqu(t,z)dt on Q°;
(b) [ [@m) (t,2) Pt @ (2 dt — [ fue(t, )P -t @) dt on
(c) fOT FO) (¢, x) dt — fOT f(t,x)dt on Q°.
Proof. (a) It follows from (21) that Aqa™) (¢, z) — Aqu(t,z) on [0,T]xQ°. In
view of (17), we get Aq@™*) is bounded on [0, 7] xQ°. Dominated Convergence

Theorem implies that (a) holds.
(b), (¢) The proofs are the same as that of (a). O

3.2. Proof of Theorem 1.1

Using notation and results in Subsection 3.1, we prove our main theorem.
Proof of Theorem 1.1.
Existence.

In view of (10), we get for p > 1,

T
/ (2n,i — Doty + |wn7i|p*1 “Wpi — fni)dt=0 on Q°.
0
Combining this with (11)—(14), we obtain
T
/ (wi™ (t, 2)—Aqu™ (t, z)+ @™ (¢, z) [P~ ™ (¢, 2)— FO) (t,2))dt =0 on Q°.
0

Let u be the limit function in Lemma 3.4. Letting n = ny and taking the limits
as k — oo in the above equation, Lemma 3.5 and (23) imply that

/0 (ue(t, ) — Aqult,z) + |ue(t, 2) P71 - wy(t, ) — f(t,z)) dt = 0.
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From Lemma 3.4, we get the initial and boundary conditions of (1) hold. u is
a solution of (1) follows from the arbitrary of T'.
Uniqueness.

Let w and @ be two solution of (1). Let ¢ := u — @. Then for p > 1,

eie — Do+ uP~ - uy — @ |P - =0, >0, z€Q°,

S0|t:0 = 0) QO»
90t|t:0 =0, Q°,
p =0, t>0, x€0N°.

For t € [0,00), let
G = [ [Volta)du+ [ o)
Then G(0) = 0. Moreover,

G,(t) 2/ (e, ) dp + 2/ ©t - [Amo - (|ut|p_1 s U — Wt|p_1 ﬁt)] dp
Q Qe

—2/ (Ut—ﬂt)' (|Ut|p_1 U — |ﬂt|p—1 'Lvtt) d,LL
QO
S 0;

where we use the fact that for p > 1, (uy — ) - (|u,5|p’1 cug — | |PY ~ﬂt) > 0.
For any ¢t > 0, G'(¢t) < 0 and G(0) = 0 imply that G(t) = 0, and hence

V=0 on[0,00)xQ and ¢; =0 on [0,00) x Q°,

which together with ¢(¢,2) = 0 for ¢ > 0 and « € 9Q and ¢(0,z) = 0 for
x € Q2°, we have ¢ = 0. Then u = @ follows. O
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