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MULTIPLICITY OF SOLUTIONS AND SOURCE
TERMS IN A NONLINEAR PARABOLIC EQUATION
UNDER DIRICHLET BOUNDARY CONDITION

Q-HEuNnG CHOI AND ZHENG-GUO JIN

ABSTRACT. We investigate the existence of solutions of the nonlinear
heat equation under Dirichlet boundary condition on £ and periodic
condition on the variable ¢, Lu — Dyu + g(u) = f(z,t). We also
investigate a relation between multiplicity of solutions and the source
terms of the equation.

0. Introduction

In this paper, we investigate multiplicity of solutions u(z, t) for a non-
linear perturbation g(u) of the parabolic operator ( L— D;) under Dirichlet
boundary condition on {2 and periodic condition on the variable ¢,

Lu—Du+g(u) = f(z,t) in Q x R,
(0.1) v = 0 on d9Q2,
u(z,t) = wufz,t+7T),

where (1 is a bounded domain in R® with smooth boundary 89 and
the nonlinear perturbation g(u) is piecewise linear one bu* — aqu™ with
a < App < b < Agp. Here L is a second order elliptic differential operator
and a mapping from L*(Q) into itself with compact linear inverse, with
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eigenvalues —A;, each repeated as often as multiplicity
O< i< < <o — o0,
Let H be the Hilbert space defined by
H={uec }{Qx[0,T])] wuisT - periedic in t}.
Then equation (0.1) is represented by
(0.2) Lu — Dy 4+ bu™ — au” = f(z,t) in H.

In {6], the author showed by degree theory that equation (0.2), with
the forcing term f is supposed to be a multiple of the first positive eigen-
function, has at least two solutions if n is even, and at least three solutions
if n is odd.

We suppose that a < Ag; < b < Agz and the source term f is generated
by w1 and @ge. Our goal is to investigate a relation between multiplicity
of solution and source terms in equation (0.2) when f belongs to the
two-dimensional subspace of H that spanned by g and op.

Let V' be the two dimensional subspace of H spanned by (g and wge.
Let P be the orthogonal projection H onto V. Let & : V — V be a map
{ef. (1.7)) defined by

®(v) = Lv — D + P(b(v + 8(v))" —a(v +8(v))™), veV.

In section 1, we suppose that the nonlinearity —(bu* —au™) crosses the
eigenvalue Aq;. And we use the variational reduction method to reduce
the problem from an infinite dimensional one to a finite dimensional one.
In section 2, we investigate the properties of the map ¢ and we reveal a
relation between multiplicity of solutions and source terms in equation
(0.2) when f(z,t) belongs to the two-dimensional space V.

1. A variational reduction

We consider the parabolic equation under Dirichlet boundary condi-
tion and periodic condition on the variable ¢,
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Lu—Du+g(u) = f(z,t) in 2 x R,
(1.1) u = 0 on 99,
u(z,t} = ulz,t+7T).
Here the nonlinear term g(u) is piecewise linear bu™ —au™ with a < Ag <
b < Agz. We consider the boundary problem

Lu— Dyu+bu™ —au”
(1.2) u
u(z,t) = u(z,t+7T).
We denote ¢, to be the eigenfunctions corresponding to eigenvalues
A, and @;(z) > 0 in Q. Let H be the Hilbert space defined by

H={ueLl*(Q) % [0,T} | uis T-periodic in ¢}.
Then the set {@mn, = T;;(pn(a:)eimt | n>1m=0,%£1,+2---}is
orthogonal in H and g > 0.
We are concerned with the multiplicity of solutions of {1.2) only when

f is generated by the eigenfunctions g and 2. That is, we study the
equation

(1.3) Lu— Du+bu* —au” = fin H,
where f = 5100 + Som(s1, 52 € R).

It

flz,t} inQ xR,
0 on J,

I

THEOREM 1.1. If s; < 0, then (1.3) has no solution.
Proof. We rewrite {1.3) as
(L = Ds+ A)u + (b= doy)ut — (@ — dap)u™ = s1i001 + Sa002.

Multiply across by g1 and integrate over H. Since (L — Dy+ Agy)pn = 0
and ((L — Dy + Ao1)u, 1) = 0, we have

f{(b - )\01)U+ — (@ — Ao1)u” }oo1 = (s1001 + S22, Po1) = 51 / ‘Pgl = 1.
0 Q

However, we know that (b — Ao)u™ — (@ — Agr)u™ > 0 for all real valued
function u. Also @g > 0 in H. Therefore

[){(b — Ao)u’ — (@ — Aot )u" b > 0.
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Hence, there is no solution of (1.3) if sy < 0. D

To study equation (1.3), we use the contraction mapping theorem to
reduce the problem from an infinite-dimensional one to a finite-dimensional
one.

Let V be two-dimensional subspace of H spanned by {0, w0y} and
W be the orthogonal complement of V in H. Let P be the orthogonal
projection of H onto V. Then every u € H can be written as u = v+ w,
where v = Pu and w = (I — P)u. Hence equation (1.3) is equivalent to
a system

(1.4) Lw — Daw+ (I — PYblv +w)" —alv+w)™) =0,

(1.5) Ly — Dy + P(b(v + w)* — alv + w) ™) = sipor + S2¢002.

LEMMA 1.2. For a fixed v € V, equation (1.4) has a unique solution
w = B(v). Furthermore, 6(v) is Lipschitz continuous (with respect to the
L-norm ) inv.

The proof of the lemma is similar to that of [5].

By Lemma 1.2, the study of multiplicity of solutions of (1.3) is reduced
to one of an equivalent problem

(1.6)  Lv— Dw+ P(b{v +0(v))" — alv+6(v))") = 1001 + S2002

defined on the two dimensional subspace V' spanned by {01, @oz2}-

While one feels intuitively that {1.6) ought to be easier to solve than
(1.3), there is the disadvantage of an implicitly defined term #(v) in the
equation. However, in our case, it turns out that we know &(v) for some
special c's.

COROLLARY. Ifv > 0 orv < 0, then 8{v) =0 .

Proof. Now, take v > 0 and #(v) = 0 since v € V, (] — P)v = 0. Then
equation (1.4) is reduced to

(L~D)- -0+ - P)bv* —av™) =0
because v* = v,v” = 0 and (I — P)u = 0. By Lemma 1.2, 6(») =0. O
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Since V' = span{wo1, w2} and pg is a positive eigenfunction, there
exists a cone C defined by

Cy = {v=cpn + capee| & >0} < gper}
for some gg > 0, so that v > 0 for all v € (), and a cone C3 defined by
Cs = {v = crpo1 + capa| €1 €0, |ea] < gglen}

so that v < 0 for all v € C5. Thus, we do not know 6{v) for all v € PH,
but we know §(v) = 0 for v € C; UC3. And C; and C; are defined as
follows

C; = {v=cipn+ c2pmle: > 0, > &olerl},
Ci = {v=cipn + cpplc: <0,le] > eoler]}

Then the union of €}, s and Cy, Cy is the space V. Now we define a
map ¢ : V ~s V given by

(1.7) ®(v) = Lv — Dw + P(b{v + 6(v))* — alv + 0{(v))7),v € V.
Then @ is continuous on V, since # is continuous on V and we have the

following lemma.

LEMMA 1.3. Forv € V and ¢ > 0, ®(cv) = c®(v).

Proof. Let ¢ > 0. If v satisfies
Lé(v) — D,8(v) + (I — P)(b(v + 8(v))* — a{v + 0(v))™) = 0,
then
L{cf(v) = De(cB(v)) + (I = P}(b(cv + cf(v))" — afcv + cB(v))7) = 0
and hence #(cv) = c¢f(v). Therefore we have
®(cv) = Llev) — D(WV) + P(blcv + 6(cv))t — alcv + 8(cv))™)
= L(cv) — Dy(cv) + P(b(ev + cf(v))* — alcv + cf(v))7)
= cL{v) — eDw + cP(b(v + 8(v))T — a(v + 8(v)) )
= c®(v).
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2. Multiplicity of solutions and source terms

Now we investigate the image of the cone C),Cs under ®. First we
consider the image of C) under ®. If v = ¢4, + 29902, then we have

®(v) = Lv—Dw+ P(b(v+8(v))*" —alv+6(v)7)
= —c1An¥o1 — C2Ap2n2 + b(ciwor + o)
= c1(b— Aor)gor + ca(b — Aoz)pes-

Thus the image of the rays ¢jpn + ggcppa(c; > 0) can be explicitly
calculated and they are

a1(b — don)em * goea(b — Ap2)pon (e = 0).
Therefore if a < Ag; < b < Agz, then ® maps € onto the cone
Az — b
Ry = Sdigo + daes | dy > 0,]ds| < [ =2 dip.
b— Aat
Second, we consider the image of Cs. I v = —ci0p; + cappa < 0 (e 2
0, |e2] < go¢1), then we have

®(v) = Lv— Dw+ P(bv+6(v))* —alv+6(x))")
= Lv—Dyw+ Plav)
= G An@o1 — CaAgatpoz — AC1Por + GcaPne
= a1t — a)por + cala — Aoz)por-

Thus the image of the rays —cipg % €gc1002 can be explicitly calculated
and they are

c1(Ao1 — a)por £ gocr(a — Ag2)pee (e > 0).

Therefore & maps C3 onto the cone

Am —a
Ry = {dlfﬁm +dapea| di > 0,]ds] < g (/\02 ) dl} :
01

— (i

Here we have three cases, which are Ry C R;, B3 C Ry, and R; = R; .
The first relation R; C R; holds if and only if the nonlinearity —(but —
au~) satisfies b > 2ure—tBusde) The sacond relation R; C R holds if

Aot =Apm—2a

and only if the nonlinearity —{bu" — au~) satisfies b < Mﬁ;ﬁ%@
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The last case Ry = R3 holds if and only if the nonlinearity —(bu* — au™)
satisfies b = 2wde—elertin)

AD] +Auz —Qa

LeEMMma 2.1, For every v = ¢1ypg; + Caipge € V, there exists a constant
d > 0 such that (®(v), pn) = d|cal.

Lemma 2.1 tells us that the image of ¢ is contained in the right half-
plane of V. That is, ®(C,) and ®(Cy) are the cone in the right half-plane
of V.

We consider the restriction ®|c,(1 < i < 4) of & to the cone C;. Let
&; = |, (0 < i <4), e,

q’i:Ci—>V:

First, we consider ®,. It maps C} onto R;. Let {; be the segment

defined by
Moz — b
L=< oo +dans | Jda] <o | 22 .
b— Aqt

Then the inverse image ®~!(1;) is the segment

Ly =97 {(h) = { (Yo + o) | lea < 60}-

b— Ap

By Lemma 1.3, ®, : C; — R; is bijective.
Next we consider ®3. It maps C3 onto R3;. Let I3 be the segment

defined by
Aoz — @
ls = {9001+d29902 | |da] Sé‘o( % )}
a— Aot

Then the inverse image ®;1(I3) is the segment

Ly=3'(ly) = {

By Lemma 1.3, ®3 : Cy — Hj is bijective.

Co| < .
2~ o (o +capea) | o] < Eu}
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. . bt — s 201 Age —a(AoL+Aoz)
2.1. The nonlinearity —(bu* — au™) satisfies & > = =20

The relation Ry C Rj holds if and only if the nonlinearity —(bu*—au™)

satisfies b > %'ilw-—mi\gﬂ. Now we find the images of the cones Cy and
o1+A2—2a

C4 under ®, where
C: = {v=cipo +copoa | €2 > 0,600} < el
C: = {v=ocrpn+cpn | o <0,elal < cll

By Theorem 1.1 and Lemma 1.2, the image of C; under ® is a cone
containing

Agg — b Ao — @
R:z:{dﬂpm‘l'dz%ﬂ dlZO,&“o( % )dlﬁdgifo (Aoz )dl}

b— An 01 @
and the image of C; under ® is a cone containing
Ry = {d1§001 + dopoa | dy = 0, —&p (im - a) d) <dy < —¢& (/\02 — b) }
01 — 4 b— Aoy
We consider the restrictions ®; and ®4, and define the segments {y, 4 as
follows:

Az — b Aoz — @
I = d <ds < L —
2 {wm-f- 2002 | €o(b_/\m)_d2_€u(,\m_a)},

a— A b A
ly = < +daoz | €0 2)<dy < e o .
/\01—0, b”-Am

We investigate the inverse image ®;*(ly) and ®;'(l,). Hence, we want to
prove that ®, and ®, are surjective.

LEMMA 2.2. Let %(i = 2,4) be any simple path in R; with end points
on OR;, where each ray (starting from the origin) in R; intersects only
one point of y;. Then the inverse image ®;'(vy;) of v; Is also a simple path
in C; with end points on 8C;, where any ray (starting from the origin)
in C; intersects only one point of this path.

Proof. We note that ®;'(7y;) is closed since @ is continuous and ; is
closed in V. Suppose that there is a ray (starting from the origin) in
C; which intersects two points of ®;'(v;), say p and ap(a > 1). Then,
by lemma 3.1.3 ®;(ap) = a®;(p) which implies that ®;(p) € 7 and
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®;(ap) € v. This contradicts the assumption that each ray (starting
from the origin) in C; intersects only one point of ;.

We regard a point p as a radius vector in the plane V. Then for a
point p in V, we define the argument arg p of p by the angle from the
positive p;-axis to p.

We claim that ®;'(v;) meets all the rays (starting from the origin)
in C;. If not, ®;'(v;) is disconnected in C;. Since &;!(v;) is closed and
meet at most one point of any ray in Cj, there are two points p; and p;
in C; such that ®!(v;) does not contain any point p € C; with

arg p; < arg p < arg ps.

On the other hand, if we set { be the segment with end points p;, and ps.
then ®;(l) is a path in R;, where ®;(p;) and ®;(p2) belong to v;. Choose
a point ¢ in ®;(l) such that arg g is between arg ®;(p,) and arg ®;(ps).
Then there exist a point ¢’ of 7; such that ¢ = (¢ for some 5 > 0. Hence
®;'(g) and ®;'(¢') are on the same ray (starting from the origin) in C;
and
arg py < arg 87(¢') < arg pa

which is a contraction. This completes the proof. O

Lemma 2.2 implies that ®;(i = 2, 4) is surjective. Hence we have the
following theorem.

THEOREM 2.3. For 1 < i < 4, the restriction ®; maps C; onto R;.
Therefore, ® maps V onto R3. In particular, ®; and ®; are bijective.

The above theorem also implies the following result.

THEOREM 2.4. Suppose & < Ayy < b < Apz and b > %@%\@.
Let f = s1o01 + s50005. Then we have:

(1) If f € Ry, then (1.3) has exactly two solutions, one of which is
positive and the other is negative.

(2) If f belongs to interior of Ry or interior of Ry, then (1.3) has a
negative solution and at least one sign changing solution.

(3) If f belongs to boundary of R3, then (1.3) has a negative solution.

(4) If f does not belong to Rj, then (1.3) has no solution.
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2.2. The nonlinearity —(bu" —~ au~) satisfies b < %%l

The relation Rz C R; holds if and only if the nonlinearity —(bu" —au ")
satisfies b < Pmie—abntle) investigate the image of the cones C,

Aol +Am—2a
and Cj under @, where
Cy = {v=crpn+avn!l ¢ >0cla| <o},
Cy = {”U = C1¢901 + Co¥o2 l cr < 0,80|01| < |C‘2|}-

By Theorem 1.1 and Lemma 1.2, the image of C; under ® is a cone
containing

/ App —a Ao — b
R:’:{dlw°‘+d2“0°2| dlzo"g"(;\m )d1§d2sso(°"’ )dl}

n—a b— Ao

and the image of C; under @ is a cone containing
b— A —A

Ry = ¢ dipn + dape | di > 0,¢9 2V <dy < g Sl dip.
b— }\01 AOI —a

We consider the restrictions ®; and ®4, and define the segments I} and

I} as follows:

Az — @ Apz — b
2 {9001+ 2002 | 60(/\01_&)_ 2_50(1)—,\01)}’

b— A e — Aw
. . <dy < :
" .{(Pol + dapoa | €0 (b~ )\01) =% =% (Am - a)}

We investigate the inverse images ®;'(l}) and ®,(I,). We note that
®,(C,) and ®4(C,) contains R} and R).

LEMMA 2.5. Fori = 2,4, let 7' be a simple path in R, with end points
on GR;, where each ray in R] (starting from the origin) intersects only
one point of y. Then the inverse image ®; (') of v is also simple path
in C; with end point on OC;, where any ray in C; (starting from the
origin) intersects only one point of this path.

Proof. The proof is similar to that of Lemma 2.2. ]

Lemma 2.5 implies that ®; and ®, are surjective. Hence we have the
following theorem.
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THEOREM 2.6. For 1 = 2,4, the restriction ®; maps C; onto Rj. And
®, and ®; are bijective. Therefore, ® maps V onto R;.

With the above theorem, we have the {ollowing results.

THEOREM 2.7. Suppose a < Ag; < b < Agz and b < W.
Let f = sypp + sappe € V. Then we have

(1) If f € Rs, then (1.3) has exactly two solutions one of which is
positive and the other is negative.

(2) If f belongs to interior of R, or interior R}, then (1.3) has a negative
solution and at least one sign changing solution.

(3) If f belongs to boundary of Ry, then (1.3) has a negative solution.

{4) If f does not belong to Ry, then (1.3) has no solution.

2.3. The nonlinearity —(bu™ — au™) satisfies b= &\%}‘E—I;;M

The relation R, = Rj holds if and only if the nonlinearity —{(but —au™)

. _ 2AdpAm—a{rg +Ax) : .
satisfies b = =2 =022 Consider the map @ : V' ~— V defined by

d(v) = Lv — Dy + P(b(v + 0(¥))* —a(v + 6(v))”), veV,

_ _
where a < Xy < b < App and b = 4(—1”“;5 — o:‘ﬁ‘z"?“ . Now we want to

investigate the images of the cone C; and C; under ®. For fixed v, we
define a map
@y (Ao Ae) — V
as follows
(I)v(b) = Lv— Dw+ P(b('U + w)+ — O)(’U +’EU)_), be (;\01, Aoz),

where ©» € V and a is fixed.

LEMMA 2.8. If a is fixed and Mgy < b < Aga, then &, is continuous at
by = 2'\01/\nz—a§)\m+>\02}'

AgHApz—2a

Proof. Let § = 2 and Xy, < b < Az. Rewrite (1.4) as
(21) (-L+D;—8w={U-P)blv+w)" —alv+w) —dv+w)),
or equivalently

(22) w = (_L + Dt - 6)_1(1 - P)g(bww):
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where
g(b,w) =bv +w)* —a(v+w)” — (v + w).
By Lemma 1.2, (2.2) has a unique solution w = 6,(v), for a fixed b. Let
wo = O (v). Then we have
w-wy = Sig(b,w) — g(bo, wo)]
= S[g(b,w) — g(b, wo) + g(b,wo) — g{bo, wy)]
= S[g{b,w) — g(b, wo))
+S[g(b, wp) - g(bg,wg)],
where S = (~L + D, — 6)"}(I — P). Since
l19(b,w) — g{b,wo)|| < max{[b— 4], |8 — alHlw — wo

and )

v =———max{|b~- 68,0 —a|} <1,

g mex(lp 01,6 —al}
we have
1
lw — woll < ¥ilw — woll + mllw — wol| - |b — bol.

Hence 1

— < -lb—b

“w wﬂ“ —_ IAOZ_a|\1_71||U+WO|| | Ol:l
which shows that &,(v) is continuous at by = 2’\0"\"7’_“(’\3‘“‘” . Thus ®,(b
Aa1+Age—2a

is continuous at bg. O

First, we investigate the image of the cone (5 under ®. Let ¢4 =
wor + so <,002 and ¢ = @ + ongf—a‘{?oz We fix a and define

g J BN TRAED, 1fb>_ﬂ1»‘012%7;\%ﬁ_/\@_
arg g> — arg qi, 1fb<wo_l+ﬁﬁ.

1\01+a\nz~“2a
Then 0 <8 < % and

EQ()\OQ — b)(/\()l - a) — 50(1\02 — O‘,)(b - Am)
(b - /\01)(}\01 — (I) + E{?j(/\(}g — b)(A[}Q - a)

201 bz —a{ Aot +Age.
When b converges to w, tan# converges to 0. Hence 6 con-

verges to 0 since 0 < 8 < 3. We note that @, maps Cy onto Ry when b >

tanf =
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Pandez—aloide) n4 that, ®, maps C, onto R, when b < Zadn—alar i)

Ao +Am—2a Ap1+Ape—2e

So if b converges to %}”—), the angle of two lines consisting 9 Rs

and JR) converges to 0. Since ®, is continuous at b = %%E—@l,
®, maps Cy onto the ray

Mg — b
Sy = {d19001 + dapoz| d1 2 0,dz = g (bui )\01) dl}-

Second we investigate the image of the cone Cy under ®. Let v =

b _ p—a
Po1 — £03%c oz and 72 = w1 — £05E=5pge. We fix a. Define

. Ao Aoz —a{Ao+HAoz) .
9! — arg 1 — arg ‘v, if b > ;\1 ,\?)21+,\0 A_lza T )
arg v, — arg v, ifb< 01/\02—a§ s 02!_

Ag1-+Ag2 —2a

Then 0 < ¢ < % and

€0(haz = B)(Ao1 = a) — eo(hog ~ a)(b = Aoi)

(5 = A01) (Por — a) + €§ (A2 — B} Aoz — @)
When b converges to %ﬁ—g—’\@, tan @ converges to 0. Hence # con-
verges to 0 since 0 < 0" < 7. We note that $, maps C; onto R4 when b >

Badu—eGatdn) 4ng that 4 maps Cy onto R} when b < 2ote—elotiy)

tanf’ =

An1+Agz—2a Aoi+Am—2a
: 201 20z —af{ do1+ M . .
So if b converges to ‘"A—D"lﬂ_;}ﬁﬁl, the angle of two lines consisting R,

; . : 2201 Agz—a(Aai +A
and OR] converges to 0. Since ¥, is continuous at b = A"‘,\“ 2oLt 20z
01+An—2a ’
&4 maps C; onto the ray

Aoz — a
Sy = {dlaﬂol + dappa| di1 = 0,d2 = g (/\02 ) dl} .
01 —~ 4

Hence we have the following results.

THEOREM 2.9. For i = 2,4, the restriction ®; maps C; onto §;. And
®, and @4 are bijective. Therefore, ® maps V onto R, where R = Ry =
R;.

THEOREM 2.10. Suppose a < Agy < b < Agp and b = %@l
Let f = 5101 + Sopgs € V. Then we have

(1} If f belongs to interior of R, then (1.3) has exactly two solutions,
one of which is positive and the other is negative,
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(2) If f belongs to boundary of R, then (1.3) has a positive solution
and a negative solution, and infinitely may sign changing solutions.
(3} If f does not belong to R, then (1.3} has no selution.
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