MULTIPLICITY OF SOLUTIONS AND SOURCE TERMS IN A NONLINEAR PARABOLIC EQUATION UNDER DIRICHLET BOUNDARY CONDITION

Q-Heung Choi and Zheng-Guo Jin

ABSTRACT. We investigate the existence of solutions of the nonlinear heat equation under Dirichlet boundary condition on Ω and periodic condition on the variable t, $Lu - D_tu + g(u) = f(x,t)$. We also investigate a relation between multiplicity of solutions and the source terms of the equation.

0. Introduction

In this paper, we investigate multiplicity of solutions u(x,t) for a non-linear perturbation g(u) of the parabolic operator $(L-D_t)$ under Dirichlet boundary condition on Ω and periodic condition on the variable t,

(0.1)
$$Lu - D_t u + g(u) = f(x,t) & \text{in } \Omega \times R, \\ u = 0 & \text{on } \partial\Omega, \\ u(x,t) = u(x,t+T),$$

where Ω is a bounded domain in R^n with smooth boundary $\partial\Omega$ and the nonlinear perturbation g(u) is piecewise linear one $bu^+ - au^-$ with $a < \lambda_{01} < b < \lambda_{02}$. Here L is a second order elliptic differential operator and a mapping from $L^2(\Omega)$ into itself with compact linear inverse, with

Received May 27, 1999. Revised January 28, 2000.

²⁰⁰⁰ Mathematics Subject Classification: 35B10, 35K20.

Key words and phrases: nonlinear parabolic equation, Dirichlet boundary condition, multiplicity.

This work supported in part by Korea Research Foundation 1998-015-D00044 and Inha University Research Fund.

eigenvalues $-\lambda_i$, each repeated as often as multiplicity

$$0 < \lambda_1 < \lambda_2 < \cdots < \lambda_i < \cdots \longrightarrow +\infty.$$

Let H be the Hilbert space defined by

$$H = \{u \in L^2(\Omega \times [0, T]) | \text{ u is } T - \text{ periodic in } t\}.$$

Then equation (0.1) is represented by

(0.2)
$$Lu - D_t u + bu^+ - au^- = f(x,t) \text{ in } H.$$

In [6], the author showed by degree theory that equation (0.2), with the forcing term f is supposed to be a multiple of the first positive eigenfunction, has at least two solutions if n is even, and at least three solutions if n is odd.

We suppose that $a < \lambda_{01} < b < \lambda_{02}$ and the source term f is generated by φ_{01} and φ_{02} . Our goal is to investigate a relation between multiplicity of solution and source terms in equation (0.2) when f belongs to the two-dimensional subspace of H that spanned by φ_{01} and φ_{02} .

Let V be the two dimensional subspace of H spanned by φ_{01} and φ_{02} . Let P be the orthogonal projection H onto V. Let $\Phi: V \to V$ be a map (cf. (1.7)) defined by

$$\Phi(v) \doteq Lv - D_t v + P(b(v + \theta(v))^+ - a(v + \theta(v))^-), \quad v \in V.$$

In section 1, we suppose that the nonlinearity $-(bu^+-au^-)$ crosses the eigenvalue λ_{01} . And we use the variational reduction method to reduce the problem from an infinite dimensional one to a finite dimensional one. In section 2, we investigate the properties of the map Φ and we reveal a relation between multiplicity of solutions and source terms in equation (0.2) when f(x,t) belongs to the two-dimensional space V.

1. A variational reduction

We consider the parabolic equation under Dirichlet boundary condition and periodic condition on the variable t,

(1.1)
$$Lu - D_t u + g(u) = f(x,t) & \text{in } \Omega \times R, \\ u = 0 & \text{on } \partial \Omega, \\ u(x,t) = u(x,t+T).$$

Here the nonlinear term g(u) is piecewise linear $bu^+ - au^-$ with $a < \lambda_{01} < b < \lambda_{02}$. We consider the boundary problem

(1.2)
$$Lu - D_t u + bu^+ - au^- = f(x,t) & \text{in } \Omega \times R, \\ u = 0 & \text{on } \partial\Omega, \\ u(x,t) = u(x,t+T).$$

We denote φ_n to be the eigenfunctions corresponding to eigenvalues λ_n and $\varphi_1(x) > 0$ in Ω . Let H be the Hilbert space defined by

$$H = \{u \in L^2(\Omega) \times [0,T] \mid u \text{ is } T\text{-periodic in } t\}.$$

Then the set $\{\varphi_{mn} = \frac{1}{\sqrt{2\pi}}\varphi_n(x)e^{imt} \mid n \geq 1, m = 0, \pm 1, \pm 2, \cdots\}$ is orthogonal in H and $\varphi_{01} > 0$.

We are concerned with the multiplicity of solutions of (1.2) only when f is generated by the eigenfunctions φ_{01} and φ_{02} . That is, we study the equation

(1.3)
$$Lu - D_t u + bu^+ - au^- = f \text{ in } H,$$

where $f = s_1 \varphi_{01} + s_2 \varphi_{02}(s_1, s_2 \in R)$.

Theorem 1.1. If $s_1 < 0$, then (1.3) has no solution.

Proof. We rewrite (1.3) as

$$(L - D_t + \lambda_{01})u + (b - \lambda_{01})u^+ - (a - \lambda_{01})u^- = s_1\varphi_{01} + s_2\varphi_{02}.$$

Multiply across by φ_{01} and integrate over H. Since $(L - D_t + \lambda_{01})\varphi_{01} = 0$ and $((L - D_t + \lambda_{01})u, \varphi_{01}) = 0$, we have

$$\int_{\Omega}\{(b-\lambda_{01})u^{+}-(a-\lambda_{01})u^{-}\}\varphi_{01}=(s_{1}\varphi_{01}+s_{2}\varphi_{02},\varphi_{01})=s_{1}\int_{\Omega}\varphi_{01}^{2}=s_{1}.$$

However, we know that $(b - \lambda_{01})u^+ - (a - \lambda_{01})u^- \ge 0$ for all real valued function u. Also $\varphi_{01} > 0$ in H. Therefore

$$\int_{\Omega} \{(b-\lambda_{01})u^{+} - (a-\lambda_{01})u^{-}\}\varphi_{01} \geq 0.$$

Hence, there is no solution of (1.3) if $s_1 < 0$.

To study equation (1.3), we use the contraction mapping theorem to reduce the problem from an infinite-dimensional one to a finite-dimensional one.

Let V be two-dimensional subspace of H spanned by $\{\varphi_{01}, \varphi_{02}\}$ and W be the orthogonal complement of V in H. Let P be the orthogonal projection of H onto V. Then every $u \in H$ can be written as u = v + w, where v = Pu and w = (I - P)u. Hence equation (1.3) is equivalent to a system

$$(1.4) Lw - D_t w + (I - P)(b(v + w)^+ - a(v + w)^-) = 0,$$

$$(1.5) Lv - D_t v + P(b(v+w)^+ - a(v+w)^-) = s_1 \varphi_{01} + s_2 \varphi_{02}.$$

LEMMA 1.2. For a fixed $v \in V$, equation (1.4) has a unique solution $w = \theta(v)$. Furthermore, $\theta(v)$ is Lipschitz continuous (with respect to the L^2 -norm) in v.

The proof of the lemma is similar to that of [5].

By Lemma 1.2, the study of multiplicity of solutions of (1.3) is reduced to one of an equivalent problem

(1.6)
$$Lv - D_t v + P(b(v + \theta(v))^+ - a(v + \theta(v))^-) = s_1 \varphi_{01} + s_2 \varphi_{02}$$
 defined on the two dimensional subspace V spanned by $\{\varphi_{01}, \varphi_{02}\}$.

While one feels intuitively that (1.6) ought to be easier to solve than (1.3), there is the disadvantage of an implicitly defined term $\theta(v)$ in the equation. However, in our case, it turns out that we know $\theta(v)$ for some special c's.

Corollary. If $v \geq 0$ or $v \leq 0$, then $\theta(v) \equiv 0$.

Proof. Now, take $v \ge 0$ and $\theta(v) = 0$ since $v \in V$, (I - P)v = 0. Then equation (1.4) is reduced to

$$(L - D_t) \cdot 0 + (I - P)(bv^+ - av^-) = 0$$

because $v^+ = v, v^- = 0$ and (I - P)v = 0. By Lemma 1.2, $\theta(v) \equiv 0$. \square

Since $V = span\{\varphi_{01}, \varphi_{02}\}$ and φ_{01} is a positive eigenfunction, there exists a cone C_1 defined by

$$C_1 = \{v = c_1 \varphi_{01} + c_2 \varphi_{02} | c_1 > 0, |c_2| < \varepsilon_0 c_1\}$$

for some $\varepsilon_0 > 0$, so that $v \geq 0$ for all $v \in C_1$, and a cone C_3 defined by

$$C_3 = \{v = c_1 \varphi_{01} + c_2 \varphi_{02} | c_1 \le 0, |c_2| \le \varepsilon_0 |c_1|\}$$

so that $v \leq 0$ for all $v \in C_3$. Thus, we do not know $\theta(v)$ for all $v \in PH$, but we know $\theta(v) \equiv 0$ for $v \in C_1 \cup C_3$. And C_2 and C_4 are defined as follows

$$C_2 = \{v = c_1 \varphi_{01} + c_2 \varphi_{02} | c_2 \ge 0, c_2 \ge \varepsilon_0 |c_1|\},$$

$$C_4 = \{v = c_1 \varphi_{01} + c_2 \varphi_{02} | c_2 \le 0, |c_2| \ge \varepsilon_0 |c_1|\}.$$

Then the union of C_1, C_3 and C_2, C_4 is the space V. Now we define a map $\Phi: V \longrightarrow V$ given by

(1.7)
$$\Phi(v) = Lv - D_t v + P(b(v + \theta(v))^+ - a(v + \theta(v))^-), v \in V.$$

Then Φ is continuous on V, since θ is continuous on V and we have the following lemma.

LEMMA 1.3. For $v \in V$ and $c \ge 0$, $\Phi(cv) = c\Phi(v)$.

Proof. Let $c \geq 0$. If v satisfies

$$L\theta(v) - D_t\theta(v) + (I-P)(b(v+\theta(v))^+ - a(v+\theta(v))^-) = 0,$$

then

$$L(c\theta(v) - D_t(c\theta(v)) + (I - P)(b(cv + c\theta(v))^+ - a(cv + c\theta(v))^-) = 0$$

and hence $\theta(cv) = c\theta(v)$. Therefore we have

$$\Phi(cv) = L(cv) - D_t(WV) + P(b(cv + \theta(cv))^+ - a(cv + \theta(cv))^-)
= L(cv) - D_t(cv) + P(b(cv + c\theta(v))^+ - a(cv + c\theta(v))^-)
= cL(v) - cD_tv + cP(b(v + \theta(v))^+ - a(v + \theta(v))^-)
= c\Phi(v).$$

2. Multiplicity of solutions and source terms

Now we investigate the image of the cone C_1, C_3 under Φ . First we consider the image of C_1 under Φ . If $v = c_1 \varphi_{01} + c_2 \varphi_{02}$, then we have

$$\Phi(v) = Lv - D_t v + P(b(v + \theta(v))^+ - a(v + \theta(v))^-)
= -c_1 \lambda_{01} \varphi_{01} - c_2 \lambda_{02} \varphi_{02} + b(c_1 \varphi_{01} + c_2 \varphi_{02})
= c_1 (b - \lambda_{01}) \varphi_{01} + c_2 (b - \lambda_{02}) \varphi_{02}.$$

Thus the image of the rays $c_1\varphi_{01}\pm\varepsilon_0c_2\varphi_{02}(c_1\geq 0)$ can be explicitly calculated and they are

$$c_1(b-\lambda_{01})\varphi_{01} \pm \varepsilon_0 c_1(b-\lambda_{02})\varphi_{02} \quad (c_1 \ge 0).$$

Therefore if $a < \lambda_{01} < b < \lambda_{02}$, then Φ maps C_1 onto the cone

$$R_1 = \left\{d_1 arphi_{01} + d_2 arphi_{02} \left| \quad d_1 \geq 0, \left| d_2 \right| \leq arepsilon_0 \left(rac{\lambda_{02} - b}{b - \lambda_{01}}
ight) d_1
ight\}.$$

Second, we consider the image of C_3 . If $v = -c_1\varphi_{01} + c_2\varphi_{02} \le 0$ $(c_1 \ge 0, |c_2| \le \varepsilon_0 c_1)$, then we have

$$\Phi(v) = Lv - D_t v + P(b(v + \theta(v))^+ - a(v + \theta(v))^-)
= Lv - D_t v + P(av)
= c_1 \lambda_{01} \varphi_{01} - c_2 \lambda_{02} \varphi_{02} - ac_1 \varphi_{01} + ac_2 \varphi_{02}
= c_1 (\lambda_{01} - a) \varphi_{01} + c_2 (a - \lambda_{02}) \varphi_{02}.$$

Thus the image of the rays $-c_1\varphi_{01} \pm \varepsilon_0c_1\varphi_{02}$ can be explicitly calculated and they are

$$c_1(\lambda_{01}-a)\varphi_{01}\pm\varepsilon_0c_1(a-\lambda_{02})\varphi_{02}\ (c_1\geq 0).$$

Therefore Φ maps C_3 onto the cone

$$R_3 = \left\{ d_1 \varphi_{01} + d_2 \varphi_{02} \left| \quad d_1 \geq 0, |d_2| \leq \varepsilon_0 \left(\frac{\lambda_{02} - a}{\lambda_{01} - a} \right) d_1 \right\}.$$

Here we have three cases, which are $R_1 \subset R_3$, $R_3 \subset R_1$, and $R_1 = R_3$. The first relation $R_1 \subset R_3$ holds if and only if the nonlinearity $-(bu^+ - au^-)$ satisfies $b > \frac{2\lambda_{01}\lambda_{02} - a(\lambda_{01} + \lambda_{02})}{\lambda_{01} + \lambda_{02} - 2a}$. The second relation $R_3 \subset R_1$ holds if and only if the nonlinearity $-(bu^+ - au^-)$ satisfies $b < \frac{2\lambda_{01}\lambda_{02} - a(\lambda_{01} + \lambda_{02})}{\lambda_{01} + \lambda_{02} - 2a}$.

The last case $R_1 = R_3$ holds if and only if the nonlinearity $-(bu^+ - au^-)$ satisfies $b = \frac{2\lambda_{01}\lambda_{02} - a(\lambda_{01} + \lambda_{02})}{\lambda_{01} + \lambda_{02} - 2a}$.

LEMMA 2.1. For every $v = c_1 \varphi_{01} + c_2 \varphi_{02} \in V$, there exists a constant d > 0 such that $(\Phi(v), \varphi_{01}) \geq d|c_2|$.

Lemma 2.1 tells us that the image of Φ is contained in the right half-plane of V. That is, $\Phi(C_2)$ and $\Phi(C_4)$ are the cone in the right half-plane of V.

We consider the restriction $\Phi|_{C_i}(1 \leq i \leq 4)$ of Φ to the cone C_i . Let $\Phi_i = \Phi|_{C_i}(0 \leq i \leq 4)$, i.e.,

$$\Phi_i: C_i \longrightarrow V$$
.

First, we consider Φ_1 . It maps C_1 onto R_1 . Let l_1 be the segment defined by

$$l_1 = \left\{ arphi_{01} + d_2 arphi_{02} \mid |d_2| \leq arepsilon_0 \left(rac{\lambda_{02} - b}{b - \lambda_{01}}
ight)
ight\}.$$

Then the inverse image $\Phi^{-1}(l_1)$ is the segment

$$L_1 = \Phi_1^{-1}(l_1) = \left\{ rac{1}{b - \lambda_{01}} (arphi_{01} + c_2 arphi_{02}) \mid \ |c_2| \leq arepsilon_0
ight\}.$$

By Lemma 1.3, $\Phi_1: C_1 \longrightarrow R_1$ is bijective.

Next we consider Φ_3 . It maps C_3 onto R_3 . Let l_3 be the segment defined by

$$l_3 = \left\{ arphi_{01} + d_2 arphi_{02} \mid |d_2| \le \varepsilon_0 \left(rac{\lambda_{02} - a}{a - \lambda_{01}}
ight)
ight\}.$$

Then the inverse image $\Phi_3^{-1}(l_3)$ is the segment

$$L_3 = \Phi_3^{-1}(l_3) = \left\{ rac{1}{a - \lambda_{01}} (arphi_{01} + c_2 arphi_{02}) \mid |c_2| \leq arepsilon_0
ight\}.$$

By Lemma 1.3, $\Phi_3: C_3 \longrightarrow R_3$ is bijective.

Q-Heung Choi and Zheng-Guo Jin

2.1. The nonlinearity
$$-(bu^+-au^-)$$
 satisfies $b>\frac{2\lambda_{01}\lambda_{02}-a(\lambda_{01}+\lambda_{02})}{\lambda_{01}+\lambda_{02}-2a}$

The relation $R_1 \subset R_3$ holds if and only if the nonlinearity $-(bu^+ - au^-)$ satisfies $b > \frac{2\lambda_{01}\lambda_{02} - a(\lambda_{01} + \lambda_{02})}{\lambda_{01} + \lambda_{02} - 2a}$. Now we find the images of the cones C_2 and C_4 under Φ , where

$$C_2 = \{ v = c_1 \varphi_{01} + c_2 \varphi_{02} \mid c_2 \ge 0, \varepsilon_0 |c_1| \le c_2 \},$$

$$C_4 = \{ v = c_1 \varphi_{01} + c_2 \varphi_{02} \mid c_2 \le 0, \varepsilon_0 |c_1| \le |c_2| \}.$$

By Theorem 1.1 and Lemma 1.2, the image of C_2 under Φ is a cone containing

$$R_2 = \left\{ d_1 \varphi_{01} + d_2 \varphi_{02} \mid d_1 \geq 0, \varepsilon_0 \left(\frac{\lambda_{02} - b}{b - \lambda_{01}} \right) d_1 \leq d_2 \leq \varepsilon_0 \left(\frac{\lambda_{02} - a}{\lambda_{01} - a} \right) d_1 \right\}$$

and the image of C_4 under Φ is a cone containing

$$R_4 = \left\{ d_1 \varphi_{01} + d_2 \varphi_{02} \mid d_1 \geq 0, -\varepsilon_0 \left(\frac{\lambda_{02} - a}{\lambda_{01} - a} \right) d_1 \leq d_2 \leq -\varepsilon_0 \left(\frac{\lambda_{02} - b}{b - \lambda_{01}} \right) d_1 \right\}.$$

We consider the restrictions Φ_2 and Φ_4 , and define the segments l_2, l_4 as follows:

$$\begin{split} l_2 &= \left\{ \varphi_{01} + d_2 \varphi_{02} \mid \ \varepsilon_0 \left(\frac{\lambda_{02} - b}{b - \lambda_{01}} \right) \leq d_2 \leq \varepsilon_0 \left(\frac{\lambda_{02} - a}{\lambda_{01} - a} \right) \right\}, \\ l_4 &= \left\{ \varphi_{01} + d_2 \varphi_{02} \mid \ \varepsilon_0 \left(\frac{a - \lambda_{02}}{\lambda_{01} - a} \right) \leq d_2 \leq \varepsilon_0 \left(\frac{b - \lambda_{02}}{b - \lambda_{01}} \right) \right\}. \end{split}$$

We investigate the inverse image $\Phi_2^{-1}(l_2)$ and $\Phi_4^{-1}(l_4)$. Hence, we want to prove that Φ_2 and Φ_4 are surjective.

LEMMA 2.2. Let $\gamma_i(i=2,4)$ be any simple path in R_i with end points on ∂R_i , where each ray (starting from the origin) in R_i intersects only one point of γ_i . Then the inverse image $\Phi_i^{-1}(\gamma_i)$ of γ_i is also a simple path in C_i with end points on ∂C_i , where any ray (starting from the origin) in C_i intersects only one point of this path.

Proof. We note that $\Phi_i^{-1}(\gamma_i)$ is closed since Φ is continuous and γ_i is closed in V. Suppose that there is a ray (starting from the origin) in C_i which intersects two points of $\Phi_i^{-1}(\gamma_i)$, say p and $\alpha p(\alpha > 1)$. Then, by lemma 3.1.3 $\Phi_i(\alpha p) = \alpha \Phi_i(p)$ which implies that $\Phi_i(p) \in \gamma_i$ and

 $\Phi_i(\alpha p) \in \gamma_i$. This contradicts the assumption that each ray (starting from the origin) in C_i intersects only one point of γ_i .

We regard a point p as a radius vector in the plane V. Then for a point p in V, we define the argument arg p of p by the angle from the positive φ_{01} -axis to p.

We claim that $\Phi_i^{-1}(\gamma_i)$ meets all the rays (starting from the origin) in C_i . If not, $\Phi_i^{-1}(\gamma_i)$ is disconnected in C_i . Since $\Phi_i^{-1}(\gamma_i)$ is closed and meet at most one point of any ray in C_i , there are two points p_1 and p_2 in C_2 such that $\Phi_i^{-1}(\gamma_i)$ does not contain any point $p \in C_i$ with

$$arg p_1 < arg p < arg p_2$$
.

On the other hand, if we set l be the segment with end points p_1 and p_2 . then $\Phi_i(l)$ is a path in R_i , where $\Phi_i(p_1)$ and $\Phi_i(p_2)$ belong to γ_i . Choose a point q in $\Phi_i(l)$ such that arg q is between arg $\Phi_i(p_1)$ and arg $\Phi_i(p_2)$. Then there exist a point q' of γ_i such that $q' = \beta q$ for some $\beta > 0$. Hence $\Phi_i^{-1}(q)$ and $\Phi_i^{-1}(q')$ are on the same ray (starting from the origin) in C_i and

$$\arg p_1 < \arg \Phi_i^{-1}(q') < \arg p_2,$$

which is a contraction. This completes the proof.

Lemma 2.2 implies that $\Phi_i(i=2,4)$ is surjective. Hence we have the following theorem.

THEOREM 2.3. For $1 \leq i \leq 4$, the restriction Φ_i maps C_i onto R_i . Therefore, Φ maps V onto R_3 . In particular, Φ_1 and Φ_3 are bijective.

The above theorem also implies the following result.

THEOREM 2.4. Suppose $a < \lambda_{01} < b < \lambda_{02}$ and $b > \frac{2\lambda_{01}\lambda_{02}-a(\lambda_{01}+\lambda_{02})}{\lambda_{01}+\lambda_{02}-2a}$. Let $f = s_1\varphi_{01} + s_2\varphi_{02}$. Then we have:

- (1) If $f \in \bar{R}_1$, then (1.3) has exactly two solutions, one of which is positive and the other is negative.
- (2) If f belongs to interior of R_2 or interior of R_4 , then (1.3) has a negative solution and at least one sign changing solution.
 - (3) If f belongs to boundary of R_3 , then (1.3) has a negative solution.
 - (4) If f does not belong to R_3 , then (1.3) has no solution.

2.2. The nonlinearity
$$-(bu^+ - au^-)$$
 satisfies $b < \frac{2\lambda_{01}\lambda_{02} - a(\lambda_{01} + \lambda_{02})}{\lambda_{01} + \lambda_{02} - 2a}$

The relation $R_3\subset R_1$ holds if and only if the nonlinearity $-(bu^+-au^-)$ satisfies $b<\frac{2\lambda_{01}\lambda_{02}-a(\lambda_{01}+\lambda_{02})}{\lambda_{01}+\lambda_{02}-2a}$. We investigate the image of the cones C_2 and C_4 under Φ , where

$$C_2 = \{ v = c_1 \varphi_{01} + c_2 \varphi_{02} \mid c_2 \ge 0, \varepsilon_0 | c_1 | \le c_2 \},$$

$$C_4 = \{ v = c_1 \varphi_{01} + c_2 \varphi_{02} \mid c_2 \le 0, \varepsilon_0 | c_1 | \le | c_2 | \}.$$

By Theorem 1.1 and Lemma 1.2, the image of C_2 under Φ is a cone containing

$$R_2' = \left\{d_1\varphi_{01} + d_2\varphi_{02} \mid \ d_1 \geq 0, \varepsilon_0\left(\frac{\lambda_{02} - a}{\lambda_{01} - a}\right)d_1 \leq d_2 \leq \varepsilon_0\left(\frac{\lambda_{02} - b}{b - \lambda_{01}}\right)d_1\right\}$$

and the image of C_4 under Φ is a cone containing

$$R_4' = \left\{ d_1 arphi_{01} + d_2 arphi_{02} \mid \ d_1 \geq 0, arepsilon_0 \left(rac{b - \lambda_{02}}{b - \lambda_{01}}
ight) d_1 \leq d_2 \leq arepsilon_0 \left(rac{a - \lambda_{02}}{\lambda_{01} - a}
ight) d_1
ight\}.$$

We consider the restrictions Φ_2 and Φ_4 , and define the segments l_2' and l_4' as follows:

$$\begin{aligned} &l_2' &= \left\{ \varphi_{01} + d_2 \varphi_{02} \mid & \varepsilon_0 \left(\frac{\lambda_{02} - a}{\lambda_{01} - a} \right) \leq d_2 \leq \varepsilon_0 \left(\frac{\lambda_{02} - b}{b - \lambda_{01}} \right) \right\}, \\ &l_4' &= \left\{ \varphi_{01} + d_2 \varphi_{02} \mid & \varepsilon_0 \left(\frac{b - \lambda_{02}}{b - \lambda_{01}} \right) \leq d_2 \leq \varepsilon_0 \left(\frac{a - \lambda_{02}}{\lambda_{01} - a} \right) \right\}. \end{aligned}$$

We investigate the inverse images $\Phi_2^{-1}(l_2')$ and $\Phi_4^{-1}(l_4')$. We note that $\Phi_2(C_2)$ and $\Phi_4(C_4)$ contains R_2' and R_4' .

LEMMA 2.5. For i=2,4, let γ' be a simple path in R_i' with end points on $\partial R_i'$, where each ray in R_i' (starting from the origin) intersects only one point of γ' . Then the inverse image $\Phi_i^{-1}(\gamma')$ of γ' is also simple path in C_i with end point on ∂C_i , where any ray in C_i (starting from the origin) intersects only one point of this path.

Proof. The proof is similar to that of Lemma 2.2.
$$\Box$$

Lemma 2.5 implies that Φ_2 and Φ_4 are surjective. Hence we have the following theorem.

THEOREM 2.6. For i = 2, 4, the restriction Φ_i maps C_i onto R'_i . And Φ_1 and Φ_3 are bijective. Therefore, Φ maps V onto R_1 .

With the above theorem, we have the following results.

THEOREM 2.7. Suppose $a < \lambda_{01} < b < \lambda_{02}$ and $b < \frac{2\lambda_{01}\lambda_{02} - a(\lambda_{01} + \lambda_{02})}{\lambda_{01} + \lambda_{02} - 2a}$. Let $f = s_1 \varphi_{01} + s_2 \varphi_{02} \in V$. Then we have

- (1) If $f \in \bar{R}_3$, then (1.3) has exactly two solutions one of which is positive and the other is negative.
- (2) If f belongs to interior of R'_2 or interior R'_4 , then (1.3) has a negative solution and at least one sign changing solution.
 - (3) If f belongs to boundary of R_1 , then (1.3) has a negative solution.
 - (4) If f does not belong to R_1 , then (1.3) has no solution.

2.3. The nonlinearity
$$-(bu^+ - au^-)$$
 satisfies $b = \frac{2\lambda_{01}\lambda_{02} - a(\lambda_{01} + \lambda_{02})}{\lambda_{01} + \lambda_{02} - 2a}$

The relation $R_1=R_3$ holds if and only if the nonlinearity $-(bu^+-au^-)$ satisfies $b=\frac{2\lambda_{01}\lambda_{02}-a(\lambda_{01}+\lambda_{02})}{\lambda_{01}+\lambda_{02}-2a}$. Consider the map $\Phi:V\longrightarrow V$ defined by

$$\Phi(v) = Lv - D_t v + P(b(v + \theta(v))^+ - a(v + \theta(v))^-), \quad v \in V,$$

where $a < \lambda_{01} < b < \lambda_{02}$ and $b = \frac{2\lambda_{01}\lambda_{02} - a(\lambda_{01} + \lambda_{02})}{\lambda_{01} + \lambda_{02} - 2a}$. Now we want to investigate the images of the cone C_2 and C_4 under Φ . For fixed v, we define a map

$$\Phi_v:(\lambda_{01},\lambda_{02})\longrightarrow V$$

as follows

$$\Phi_v(b) = Lv - D_t v + P(b(v+w)^+ - a(v+w)^-), \quad b \in (\lambda_{01}, \lambda_{02}),$$
 where $v \in V$ and a is fixed.

LEMMA 2.8. If a is fixed and $\lambda_{01} < b < \lambda_{02}$, then Φ_v is continuous at $b_0 = \frac{2\lambda_{01}\lambda_{02} - a(\lambda_{01} + \lambda_{02})}{\lambda_{01} + \lambda_{02} - 2a}$.

Proof. Let $\delta = \frac{a+b_0}{2}$ and $\lambda_{01} < b < \lambda_{02}$. Rewrite (1.4) as

(2.1)
$$(-L + D_t - \delta)w = (I - P)(b(v + w)^+ - a(v + w)^- - \delta(v + w)),$$

or equivalently

(2.2)
$$w = (-L + D_t - \delta)^{-1} (I - P) g(b, w),$$

where

$$g(b, w) = b(v + w)^{+} - a(v + w)^{-} - \delta(v + w).$$

By Lemma 1.2, (2.2) has a unique solution $w = \theta_b(v)$, for a fixed b. Let $w_0 = \theta_{b_0}(v)$. Then we have

$$w - w_0 = S[g(b, w) - g(b_0, w_0)]$$

$$= S[g(b, w) - g(b, w_0) + g(b, w_0) - g(b_0, w_0)]$$

$$= S[g(b, w) - g(b, w_0)]$$

$$+S[g(b, w_0) - g(b_0, w_0)],$$

where $S = (-L + D_t - \delta)^{-1}(I - P)$. Since

$$||g(b, w) - g(b, w_0)|| \le \max\{|b - \delta|, |\delta - a|\}||w - w_0||$$

and

$$\gamma = \frac{1}{|\lambda_{02} - a|} \max\{|b - \delta|, \delta - a|\} < 1,$$

we have

$$||w - w_0|| \le \gamma ||w - w_0|| + \frac{1}{|\lambda_{02} - a|} ||w - w_0|| \cdot |b - b_0|.$$

Hence

$$||w-w_0|| \le \frac{1}{|\lambda_{02}-a||1-\gamma|}||v+w_0|| \cdot |b-b_0|,$$

which shows that $\theta_b(v)$ is continuous at $b_0 = \frac{2\lambda_{01}\lambda_{02} - a(\lambda_{01} + \lambda_{02})}{\lambda_{01} + \lambda_{02} - 2a}$. Thus $\Phi_v(b)$ is continuous at b_0 .

First, we investigate the image of the cone C_2 under Φ . Let $q_1 = \varphi_{01} + \varepsilon_0 \frac{\lambda_{02} - b}{b - \lambda_{01}} \varphi_{02}$ and $q_2 = \varphi_{01} + \varepsilon_0 \frac{\lambda_{02} - a}{\lambda_{01} - a} \varphi_{02}$. We fix a and define

$$\theta = \begin{cases} \arg q_1 - \arg q_2, & \text{if } b > \frac{2\lambda_{01}\lambda_{02} - a(\lambda_{01} + \lambda_{02})}{\lambda_{01} + \lambda_{02} - 2a} \\ \arg q_2 - \arg q_1, & \text{if } b < \frac{2\lambda_{01}\lambda_{02} - a(\lambda_{01} + \lambda_{02})}{\lambda_{01} + \lambda_{02} - 2a} \end{cases}$$

Then $0 \le \theta \le \frac{\pi}{2}$ and

$$\tan \theta = \left| \frac{\varepsilon_0(\lambda_{02} - b)(\lambda_{01} - a) - \varepsilon_0(\lambda_{02} - a)(b - \lambda_{01})}{(b - \lambda_{01})(\lambda_{01} - a) + \varepsilon_0^2(\lambda_{02} - b)(\lambda_{02} - a)} \right|.$$

When b converges to $\frac{2\lambda_{01}\lambda_{02}-a(\lambda_{01}+\lambda_{02})}{\lambda_{01}+\lambda_{02}-2a}$, $\tan\theta$ converges to 0. Hence θ converges to 0 since $0 \le \theta \le \frac{\pi}{2}$. We note that Φ_2 maps C_2 onto R_2 when b >

 $\frac{2\lambda_{01}\lambda_{02}-a(\lambda_{01}+\lambda_{02})}{\lambda_{01}+\lambda_{02}-2a} \text{ and that } \Phi_2 \text{ maps } C_2 \text{ onto } R_2' \text{ when } b < \frac{2\lambda_{01}\lambda_{02}-a(\lambda_{01}+\lambda_{02})}{\lambda_{01}+\lambda_{02}-2a}.$ So if b converges to $\frac{2\lambda_{01}\lambda_{02}-a(\lambda_{01}+\lambda_{02})}{\lambda_{01}+\lambda_{02}-2a}, \text{ the angle of two lines consisting } \partial R_2 \text{ and } \partial R_2' \text{ converges to } 0. \text{ Since } \Phi_2 \text{ is continuous at } b = \frac{2\lambda_{01}\lambda_{02}-a(\lambda_{01}+\lambda_{02})}{\lambda_{01}+\lambda_{02}-2a},$ $\Phi_2 \text{ maps } C_2 \text{ onto the ray}$

$$S_2=\left\{d_1arphi_{01}+d_2arphi_{02}|\ d_1\geq 0, d_2=arepsilon_0\left(rac{\lambda_{02}-b}{b-\lambda_{01}}
ight)d_1
ight\}.$$

Second we investigate the image of the cone C_4 under Φ . Let $\gamma_1 = \varphi_{01} - \varepsilon_0 \frac{\lambda_{02} - b}{b - \lambda_{01}} \varphi_{02}$ and $\gamma_2 = \varphi_{01} - \varepsilon_0 \frac{\lambda_{02} - a}{\lambda_{01} - a} \varphi_{02}$. We fix a. Define

$$\theta' = \begin{cases} \arg \gamma_1 - \arg \gamma_2, & \text{if } b > \frac{\lambda_{01}\lambda_{02} - a(\lambda_{01} + \lambda_{02})}{\lambda_{01} + \lambda_{02} - 2a}; \\ \arg \gamma_2 - \arg \gamma_1, & \text{if } b < \frac{2\lambda_{01}\lambda_{02} - a(\lambda_{01} + \lambda_{02})}{\lambda_{01} + \lambda_{02} - 2a}. \end{cases}$$

Then $0 \le \theta' \le \frac{\pi}{2}$ and

$$\tan \theta' = \left| \frac{\varepsilon_0(\lambda_{02} - b)(\lambda_{01} - a) - \varepsilon_0(\lambda_{02} - a)(b - \lambda_{01})}{(b - \lambda_{01})(\lambda_{01} - a) + \varepsilon_0^2(\lambda_{02} - b)(\lambda_{02} - a)} \right|.$$

When b converges to $\frac{2\lambda_{01}\lambda_{02}-a(\lambda_{01}+\lambda_{02})}{\lambda_{01}+\lambda_{02}-2a}$, $\tan\theta'$ converges to 0. Hence θ' converges to 0 since $0 \le \theta' \le \frac{\pi}{2}$. We note that Φ_4 maps C_4 onto R_4 when $b > \frac{2\lambda_{01}\lambda_{02}-a(\lambda_{01}+\lambda_{02})}{\lambda_{01}+\lambda_{02}-2a}$ and that Φ_4 maps C_4 onto R_4' when $b < \frac{2\lambda_{01}\lambda_{02}-a(\lambda_{01}+\lambda_{02})}{\lambda_{01}+\lambda_{02}-2a}$. So if b converges to $\frac{2\lambda_{01}\lambda_{02}-a(\lambda_{01}+\lambda_{02})}{\lambda_{01}+\lambda_{02}-2a}$, the angle of two lines consisting ∂R_4 and $\partial R_4'$ converges to 0. Since Φ_4 is continuous at $b = \frac{2\lambda_{01}\lambda_{02}-a(\lambda_{01}+\lambda_{02})}{\lambda_{01}+\lambda_{02}-2a}$, Φ_4 maps C_4 onto the ray

$$S_4=\left\{d_1arphi_{01}+d_2arphi_{02}|\ \ d_1\geq 0, d_2=arepsilon_0\left(rac{\lambda_{02}-a}{\lambda_{01}-a}
ight)d_1
ight\}.$$

Hence we have the following results.

THEOREM 2.9. For i=2,4, the restriction Φ_i maps C_i onto S_i . And Φ_1 and Φ_3 are bijective. Therefore, Φ maps V onto R, where $R=R_1=R_3$.

THEOREM 2.10. Suppose $a < \lambda_{01} < b < \lambda_{02}$ and $b = \frac{2\lambda_{01}\lambda_{02} - a(\lambda_{01} + \lambda_{02})}{\lambda_{01} + \lambda_{02} - 2a}$. Let $f = s_1\varphi_{01} + s_2\varphi_{02} \in V$. Then we have

(1) If f belongs to interior of R, then (1.3) has exactly two solutions, one of which is positive and the other is negative.

Q-Heung Choi and Zheng-Guo Jin

- (2) If f belongs to boundary of R, then (1.3) has a positive solution and a negative solution, and infinitely may sign changing solutions.
 - (3) If f does not belong to R, then (1.3) has no solution.

References

- [1] A. Ambrosetti and G. Prodi, A primer of nonlinear analysis, Cambridge, University Press, Cambridge Studies in Advanced Math, 34 (1993).
- [2] Q. H. Choi, S. Chun, and T. Jung, The multiplicity of solutions and geometry of a nonlinear ellliptic equation, Studia Math. 120 (1996), 259-270.
- [3] Q. H. Choi and T. S. Jung, On periodic solutions of the nonlinear suspension bridge equation, Differential and Integral Equations, 4 (1991), 383-396.
- [4] _____, An application of a variational reduction method to a nonlinear wave equation, J. Differential Equations, 117 (1995), 390-410.
- [5] ______, A nonlinear beam equation with nonlinearity crossing an eigenvalue, Dynam. Contin. Discrete Impulsive Systems, 4 (1998), 331-350.
- [6] P. J. McKenna, Topological Methods for Asymmetric Boundary Value Problems, Lecture Notes Ser. 11, Res, Inst, Math, Global Analysis Res. Center, Seoul National University, 1993.
- [7] P. J. McKenna, R. Redlinger, and W. Walter, Multiplicity results for asymptotically homogeneous semilinear boundary value problems, Ann. Mat. Pura Appl. 143 (1988), no. 4, 347-257.
- [8] J. Schröder, Operator Inequalities, Academic Press, New York, 1980.

DEPARTMENT OF MATHEMATICS, INHA UNIVERSITY, INCHEON 402-751, KOREA E-mail: qhchoi@math.inha.ac.kr