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Abstract. In the category of the group theoretic methods using invertible discrete group

transformation, we give a useful relation between Emden-Fowler equations and nonlinear

heat equation. In this paper, by means of appropriate transformations of discrete group

analysis, the nonlinear hate equation transformed into the class of the Emden-Fowler equa-

tions. This approach shows that, under the group action, the solution of reference equation

can be transformed into the solution of the transformed equation.

1. Introduction

It is well known that the theory of differential equations takes a central place
among possible instruments for the modeling of different processes and phenom-
ena. The classical concepts of groups introduced by S. Lie and A. Bäcklund, which
constitute the foundation of modern group analysis are responsible for out stand-
ing achievements in the theory of partial differential equations. However, similar
approach based on a search for continuous transformation groups, which map the
equation under investigation into itself (i.e., exactly into the same equation), proved
to be ineffective for solving ordinary differential equations. The latter circumstance
is accounted for by the fact that the issue of searching for a continuous group of
transformations for an ordinary differential equation is as complicated as the prob-
lem of its integration.

In this paper, we analyze the relation between the classical Emden-Fowler equa-
tions and nonlinear equation of heat conduction problem with variable transfer co-
efficients. Also, we shows that, the nonlinear heat equation by using the effect of
series of discrete group transformations, transformed to the classical Emden-Fowler
equation. On the other hands, all the transformations applied for the conversion
of heat equation are invertible and this invertibility clearly allows us to avoid some
lengthy computations for the conversion of the initial and boundary condition. Also,
under the discrete group transformations, the solution of the transformed equation
can be converted into the solution of the reference equation [5], [6].
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2. Preliminaries

In this section, we shall state some concepts and definitions about discrete group
analysis.

Definition 1. The class of classical Emden-Fowler equations is written as:

y′′xx = Axnym, a = (n,m, 0),

where it is determined by a three dimensional parameter vector a = (n, m, 0) ∈ R3.

Let D be a class of ODE and

D(x, y, a) = 0,

be an equation in this class, where a is a vector parameters.
We shall seek the transformations Fi that are closed in the class D(x, y, a) = 0 ,
i.e., they change only the vector a:

Fi : D(x, y, a) → D(t, u, bi).

If each Fi has an inverses, then the collection {Fi} defines a D.T.G (Discrete Trans-
formation Group) on the class D(x, y, a) = 0.

Definition 2. An RF -Pair is an operation of consecutive raising and lowering the
order of equation.

Now, we define the following R-operations and F -operations:

i) Termwise m-fold differentiation of the original equation, type RDm.

ii) Termwise one or two-fold differentiation of original equation with respect to
the independent variable, type accordingly RX or RX2.

iii) The equation is an exact derivative of the m th order: termwise integration
m times, type FIm.

iv) The equation is autonomous, i.e., it does not conclude an independent variable
in an explicit form, type FX

FX : y′x = u(y), y′′xx = uu′y.

v) The equation is homogeneous in the extended sense, type FU : the trans-
formation x = et, y = uekt, with an appropriate choice of k, leads to an
autonomous form followed by a transformation FX.

If an R(F )-operating RZm(FZm) is inverted, it is denoted by RZ−m(FZ−m).
The RF -pair will be written in a contracted form by means of an ordered pair,
the second letters used in the designation of the operation symbol, the left letter
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corresponding to the transformation performed first RF (D, X) ≡ (FX)⊗ (RD).

Definition 3. Abel equation of the second kind, which is applied in many problems
of mechanics, physics and other sciences is written as:

(1) yy′x = F1(x)y + F0(y).

This equation is called degenerate if F0 = 0 or F1 = 0. It is obvious that
degenerate Abel equations are easily integrable, therefore, we assume that: F0 6= 0
and F1 6= 0.

Furthermore, it is important that the more general Able equation:

(φ1(x)z + φ0(x))z′x = ψ2(x)z2 + ψ1(x)z + ψ0(x),

can be reduced to the Abel equation using the following transformation:

y = (
φ0

φ1
+ z)E, E = exp(−

∫
(
ψ2

φ1
)dx),

where

F1 = (
d

dx
(
φ0

φ1
) +

ψ1

φ1
− 2

φ0ψ2

φ2
1

)E, F0 = (
ψ0

φ1
− φ0ψ1

φ2
1

+
φ2

0ψ2

φ3
1

)E2.

(For further details see [6]).
If a new variable τ = τ(x) and a function ϕ (which is in the general case is given in
the parametric form) are introduced:

τ =
∫

F1(x)dx, ϕ =
F0(x)
F1(x)

,

where transformations above are called the canonical transformations of Abel equa-
tions of the second kind, then the original equation (1) may be written in the
canonical form:

yy′τ − y = ϕ(τ).

3. Analysis of the method

This section presents analysis of the relation between the classical Emden-Fowler
equation and nonlinear equations of heat conduction. First of all, we shall consider
the problem of a nonstationary heat exchange between a wall and an immobile
medium [6, pp. 171-172]. The thermal conductivity λ, density ρ, and specific heat
cp are assumed to arbitrarily depend on the temperature T . We assume that at
initial time t = 0, the temperature throughout the medium was uniform and equal
T0, and at t > 0, the temperature Ts on the wall surface is maintained constant
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(Ts 6= T0). The nonlinear problem under investigation is described by the following
equation with initial and boundary conditions :

(2) cp(T )ρ(T )
∂T

∂t
=

∂

∂X
λ(T )

∂T

∂X
,

(3) T (X, 0) = T0, T (0, t) = Ts, lim
X→∞

T (X, t) = T0,

where X is the distance from the wall.
Following procedures in [6], we introduce dimensionless variables:

(4) x =
X

L
, τ = (

λ

ρcp
)0

t

L2
, y =

∫ T0

T
ρcpdT

∫ T0

Ts
ρcpdT

, f =
λ

ρcp
(
ρcp

λ
)0,

where L is a constant chosen as the length scale, the index ”0” signifies that the
corresponding quantity is taken at T = T0.

The problem (2)-(3) using (4) is written in the following form:

(5)
∂y

∂τ
=

∂f(y)
∂τ

∂y

∂x
,

(6) y(X, 0) = 0, y(X, τ) = 1, lim
X→∞

y(X, τ) = 0.

Note that it is generally assumed that the product ρ(T ).cp(T ) = constant. So,
in this case formulas (4) are significantly simplified as follows:

x =
X

L
, τ =

λ(T0)t
ρcpL2

, y =
T0 − T

T0 − Ts
, f =

λ(T )
λ(T0)

,

and by employment of a new self-similarity variable

z =
x√
τ

,

equation (5)-(6) reduces to a two-point boundary value problem for an ordinary
differential equation of second order of the following type:

(7) 2(f(y)y′z)
′
z + zy′z = 0,

z = 0, y = 1; z →∞, y → 0.

This boundary value problem via substitution:

u = f(y)y′z,

is transformed to:

(8) 2uu′′yy = −f(y).
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Let f = (by + a)n, and setting y = by + a in (8), we obtain the Emden-Fowler
equation (n,−1, 0). Therefore, it follows that the boundary value problems (7) and
(8) are integrable by quadratures with n = −1,−2, (for further details see [6], [7]).

In what follows, we shall consider the following nonlinear heat conduction prob-
lems with variable transfer coefficients which is the problem of Inertial Confinement
Fusion (ICF)[2], [3]:

(9) ∇.(K(T )∇T ) =
∂T

∂t
,

and our aim is to convert this problem into the classical Emden-Fowler equations
using a series of transformations. In this equation x is the distance, t is the time
and K = k0T

5
2 , where k0 is constant.

In the spherical coordinates, let T (r, θ, φ, t) = T (r, t), it is evident that ∇r =
r̂ ∂

∂r , then equation (9) reduces as follows:

(10)
∂K

∂r
r̂.

∂T

∂r
r̂ +

K

r2

∂

∂r
(r2 ∂T

∂r
) =

∂T

∂t
.

By substituting:
∂K

∂r
=

5
2
k0T

3
2
∂T

∂r
,

into (10), we obtain the following equation:

(11)
5
2
k0T

3
2 (

∂T

∂r
)2 +

2k0

r
T

5
2
∂T

∂r
+ k0T

5
2
∂2T

∂r2
=

∂T

∂t
.

Application of the separation of variables:

T (r, t) = R(r)P (t),

gives:
∂T

∂P
= RP ′t ,

∂T

∂r
= PR′r,

∂2T

∂r2
= PR′′rr,

and hence equation(11) reduces to:

5k0

2
R

1
2 R′2r + 2k0r

−1R
3
2 R′r + k0R

3
2 R′′rr = P

−7
2 P ′t = λ2,

where λ is the separation parameter. As a result of this decomposition, we obtain
the following defining system:

(12) P−
7
2 P ′t = λ2,

(13)
5k0

2
R

1
2 R′2r + 2k0r

−1R
3
2 R′r + k0R

3
2 R′′rr = λ2.
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Note that the first equation of this system yields the function P (t), to the following
form :

(14) −2
5
P−

5
2 + c1 = λ2t.

We shall now apply the following discrete group transformation (DGT), as a
consequence of which the equation (13) is transformed to the classical Emden-Fowler
equation. Having applied the operation FU : r = es, R = ueks, on the equation
(13) it leads to the autonomous equation:

(15) k0u
3
2 u′′ss + k0(7k + 1)u

3
2 u′s +

5k0

2
u

1
2 u′2s + k0k(

7k

2
+ 1)u

5
2 − λ2 = 0,

where k = 4
5 and using the raising order operation FX : u′s = w(u), u′′ss = ww′u,

equation (15) reduces to the following form :

(16) ww′u = −5
2
u−1w2 − (7k + 1)w +

λ2

k0
u−

3
2 − k(

7k

2
+ 1)u,

and applying the transformation :

ν = (
φ0

φ1
+ w)E, E = exp(−

∫
(
ψ2

φ1
du)),

where

φ0 = 0, φ1 = 1, ψ0 = −λ2

k0
u−

3
2−k(

7k

2
+1)u, ψ1 = −(7k+1), ψ2 = −5

2
u−1,

the equation (16) is reduced to:

(17) νν′u = −c1(7k + 1)u
5
2 ν + c2

1

λ2

k0
u

7
2 − c2

1k(
7k

2
+ 1)u6.

where

F0(u) = c2
1

λ2

k0
u

7
2 − c2

1k(
7k

2
+ 1)u6, F1 = −c1(7k + 1)u

5
2 ν.

Substituting:

τ(u) =
∫

F1(u)du = −c1(7k + 1)
∫

u
5
2 du = c2 − c1(7k + 1)u

7
2 ,

and

ϕ(τ) =
F0(u)
F1(u)

=
k( 7k

2 + 1)c1

7k + 1
u

7
2 − λ2c1

k0(7k + 1)
u = c3(c2 − τ)− c4(c2 − τ)

2
7 ,

where ci’s are constants, in the equation (17) we obtain that:

(18) νν′τ − ν = c3(c2 − τ) + c4(c2 − τ)
2
7 ,
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where

c3 =
7k(7k

2 + 1)
2(7k + 1)2

, c4 = − λ2c1

k0(7k + 1)
(

7
2c1(7k + 1)

)
8
7 .

Substituting : c2 − τ = −q, equation (18) may be rewritten in the canonical form:

νν′q − ν = c4q
2
7 − c3q.

Now, let

(19) c3 =
(n + 2)(n + 9

7 )
(2n + 23

7 )2
, c4 = A(− 35

(14n + 23)
)2,

then, the transformation:

z = − (14n + 23)
5

ν

q
+

7(n + 2)
5

, f = Aq−
5
7 ,

reduces equation (19) to the following form:

(z − z2 + f)f ′z = [−5
7
z + n + 2]f.

(For further details see [6], [7]).
Through the substitution:

f = Axn+2y−
5
7 , z =

x

y
y′x,

we obtain the classical Emden-Fowler equation:

y′′xx = Axny
2
7 ,

where A depends on λ and λ has been defined in (14) as a separation parameter.
Note that n is also a constant depending on the initial and boundary conditions.
For some values of n, this equation is integrable [6], [7] as a consequence of which,
we have been able to construct some solution for the ICF problem.

Note that, all the RF -pair operations and transformations applied for the con-
version of heat equation are invertible and this invertibility clearly allows us to avoid
some lengthy computations for the conversion of the initial and boundary condi-
tion. Also, under the discrete group transformations, the solution of the transformed
equation can be converted into the solution of the reference equation.

4. Conclusion

By introducing the discrete group transformation, the nonlinear heat conduc-
tion problem with variable transfer coefficient in applied physics, can be transformed
into the classical Emden-Fowler equation which maybe integrated using classical
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methods. This approach shows that, under the discrete group transformation, the
solution of transformed equation can be converted into the solution of the reference
equation.
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