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ENERGY DECAY FOR THE NONLINEAR WAVE
EQUATION IN THE WHOLE SPACE WITH SOME
DISSIPATION

IL Hyo JunNG

ABSTRACT We study decay estimates of the energy for the non-
linear wave equation 1n the whole space. We note that the method
of proof 15 based on the multiplier technique and on the umque
continuation, and no geometrical condition 1s 1mposed on the
boundary.

1. Introduction

In this paper we consider the Cauchy problem for the nonlinear
wave equation with a half-linear dissipation;
(1.1) Uy — D+ p(x, 1) =0 m RY x (0, 00)
(12) w(z,0) = uy, u(x,0)=u, inRY
where p(z,v) 1s some nonlinear function specified later. For the sequel,

we need some notations We set B, = {z € R"||z| < 7} and Q. =
R\ B, for r > 0.

Let R > 0 be arbitrary fixed positive number and a(z) be a non-
negative bounded function on R” such that

(13) a(z) > ¢ > 0 a.e for z € §p.
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We now make the following hypotheses on the dissipative term
plz,v).
Hyp. p(z,v) 15 differentiable a.e. and nondecreasing function in v
such that

(1.4) p(z,v) = p(v)x(Bg) + a(z)vx(QR),
where p(v) satisfies
(1.5)  hkolv|™** < B(v)v < ky{|v["*? + |v|*} for (z,%) € Br x RY

with ko, &y > 0,0 < r < 2/(N—2) and x(A) denotes the characteristic
function of A
For example, p(v) 1s a function hke p(v) = |v|"v.

Condition (1 4) means that the dissipative term p(z,u,) has two
character; linear and nonlinear More precisely, the dissipative term
is the lnear function a(z)u, on Qg, which 1s effective at infimity. On
the other hand, it is the nonlinear function p(u;) on By satisfying
(1.5). By reason of such two character, we may call the dissipation
the half-linear dissipation, temporarily.

The main purpose of this paper 1s to mvestigate precise decay esti-
mates of the energy for the problem (1 1)-(1 2).

The problem of proving decay estimates of the solutions to the
wave equation with some dissipation has attracted a lot of attention in
recent years. To our knowledge, these are the only results for the whole
space, though the Klein-Gordon type wave equation with nonlinear
dssipations like |u;["u, have been treated by Nakao [4] and [5], Nakao
and Jung [6], Nakao and Ono [7], Ono [8], and Mochizuki and Motai
[3]. Recently, G Todorova [10] have analyzed the global existence and
nonexistence conditions in details for the Cauchy problem.

2. Preliminaries and Statement of the Main Result

Throughout this paper we shall use the following notations .

[|ull, = ”U”LP(Q), 1<p<oo;
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H™(Q)(m > 0) denotes the usual Sobolev space with the norm

1
I llamy = (32 102 £ (@) )" < oo,

la|<m
where o is the multi-indices For simphaty, we will write |juf| for
]2

Before stating our main result, let us recall the following well-
posedness result, which 15 given by Lions and Strauss {2] and Nakao

4}

THEOREM 2.1. Let (up,u;) € H2(RY) x H'(R"). Then, under
Hyp., the problem (1.1)-(1 2) adits a unique solution

u(t) € WHe({0, T), LX(RY)nwre ({0, 1), H{(RYN))NL>([0,T), H*(RY)

for any T > 0.

Moreover, for the solution u(t) to the problem (11)-(12), there
exists a finite constant K > 0 such that for any T > 0,

(2.1) V|l + )] < K for t € [0,T).
The main result of this paper 1s as follows

THEOREM 2 2. Let (ug,u;) € H*(RY) x H'(RY) and N > 3. As-
sume that Hyp 1s satisfied and N > 3 Then the energy E(t) for the
problem (1 1)-(1 2) satusfy the following decay properties

(1) Ifo <r < 2/3(N - 2), then
El)<C(l+t)™
with

. (2— Ny? 442~ N)r+8
o= Inm{ ST S (V=2
3(2 - N)r? +2(8 ~3N)r + g}
2(r +2) ’
(i) Ifr=2/3(N—2) and 0 < r < =2+ 21/N(N — 2)/(N —2), then
E(t) < C(log(2 +t))™™
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with
2— (N —29r
N S

The proof of Theorem 2 2 relies on the the following lemmas.
First, we need the following well-known lemma without proof here

LEMMA 2.1. (Gagliardo-Nirenberg) Let 1 <r <p<o0,1<g<p
and 0 < k < m. Then we have the inequality
[vlhwsr < cllolffpmal{vliE-® forv e WP LT

with some ¢ > 0 and
k 1 1 m 1™ 1.
=GP E Y
provided that 0 < # <1 0 << 1 ifp=o0 and mg=N).

LEMMA 2.2. ([5]) Let ¢(t) be a nonnegative function on [0, co)
satisfying the inequality

2
sup p(s) < C Y (1+8)%(p(t) ~ p(t +1))%, ¢t 2 0
t<s<t+ 7T a=1
with someT >0, C > 0,0<¢ <1 and ¥, < ¢,i = 1,2. Then ¢(t)
has the following decay property-

(1) f0<e¢ <1and @, <e,1=1,2, then
d(t) < Co(1 + )"

with o = mimn,_; 2{(¢, — 6,)/(1 — &)}

(2) If 6 =¢; <1 and 03 < €3 < 1, then

$(t) < Coflog(2 +1)) T

3. Some Useful Inequalities

Throughout the remainder of this paper, C' denotes different posi-
tive generic constants, independent of the mitial data, in various oc-
currences.

In this section, we will derive some useful inequahities to prove The-
orem
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LeMMA 3 1. Let q(z) = (qi{z), q2(2),...,qn(z)) € (WHR(RMY
be a vector field on RN and ¢(z) a proper function on RY. Then
for a solution u(t) to the problem (1.1)-(12), we have the following
1dentities :

(31) 0= %E(t) + /R ol wudz
d 1
0 = 7 {[w w(z)uudz + 5 ‘/QH @(x)a(m)[ulzdﬂ?}
(3.2) = jRN o) |u2dz + ./TRN Vu - V(pu)dz
+/BR () p(us)udz
d 1 .
(3.3) —% /RN V - q(2)|Vul*dz + /RN QnxnVu - Vudr

+ [ pla,ugle) - Tuds,
JRN

where Qunxn = (ay;) Is the N x N matrix with a,; = 0¢,/0z,, 1,3 =
1,2, ., N asits components

The proof of Lemma 3.1 18 based on standard multipher technique,
using u,, p(x)u and ¢(z) - Vu as multiplers, and the interested reader
should refer to Komornik{1] or Nakao[5]

In order to obtain some estimate, we prepare the following Propo-
sifion

ProprosITION 3 1. There exists Ty > 0, independent of u, such that
if T > Ty, then the mequality

T T T
(3.4) / / |u|*dodt < C(T)/ f plz, u, ) udzdt + e/ E(t)dt
0 JBp 0 JRY 0
holds for any € > 0.
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Proof. We shall use a contradiction method(cf. Nakao{5]). Assume
that (3.4) does not hold. Then, there exists a sequence of solutions
{u,} of the problem (1.1)-(1 3) such that

T T
//]un]Qd:z:dtZﬁn/ / (2, Ut Yungdzdt
o Jag o JR¥
T
te / B, (£)dt
0

where E, (t) is defined by E(t) with u, instead of u.
Setting

(3.5)

A2 = / /B [un[2dzdt and v,(t) = 'Um.(

n

we get by (3.5),

T T
n/‘/‘Egﬁﬁdmduﬁ+6/‘E%Gﬂt§L
0 RN An 0

where E, (t) is defined by E(t) with u replaced by vy.
Thus we obtain

T
. vp|dxdt =1 for all n > 1,
(3.6) 2dzd fi 1
0o JBg
T
(37) / / Mvmdxdt —0asn — o0
0 RN n
and
s fo / [ (ol +19unf)dza
_—<w

€

These imply, applying Rellich compactness theorem and replacing the
sequence v, with a subsequence if needed, that

(3.9) v, — v weak-star in L([0, T]; HI(R™)) n Wh=([0,T]; L*(R™))
(3 10)v, — » strongly i L*([0,T) x Bg
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Therefore (3.6), (3.7), (3.9) and (3.10) lead to the followmg limit prob-
lem -

(311) vy — Av=01n RY x [0,7]
with
T
(3.12) / / lv|?dzdt = 1
0 Bg
and

v(z,t) = 0 on supp al-) x [0,7].

Since Qr C supp a-), by a general result of unique continuation(ct.
Tataru[9]), there exists Ty > 0 such that if T > Tq,

(313) v (z,t) = 0 on RY x [0, T}

Noting that (3 13) means that v(xz,t) = v(z), independent of ¢ and
usmg (3.11), we have

—Awv(z) =0 RY.

Sice v € HY{R") and N > 3, v(x) must be 1dentically zero n R",
which 1s a contradiction to (3 12) This completes the proof of Propo-
sition 3.1 O

From now on we set,

X(t) ?"_/ (wd(r)z - Vudr + auu)de

(3 14) aR”

+ -é-/ a(z)|u|*dz + kE(t)
Qg

Here o and & > 0 are some constants, and ¢(r), r = |z} 1s a Lipschitz
continnous function on [0, 00) as follows

| e Hfr <R
#lr) = { @R ify >R,
where ¢y and R are positive constants given in (1.3)

Then we obtaimn the following(for proof, see [6]) :
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PROPOSITION 3.2. ForT > Ty and a large k > 0, there exists some
constants €, > 0 and C > 0 such that the solution u of the problem
(1.1)-(1.2) satisfies for any t > 0,

t+T t+T
(3.15) X(@+T)+ k/ / oz, uy)udzds + EI/ E(s)ds
t RN t

_ t+T
<X+ C/ / p(u,)dzds.
t Br

We observe that X(t) 1s equivalent to E(¢) + [|u(t)||? if & 15 suffi-
clently large Indeed, we have :

LEMMA 3.2. For a large k > 0, there exist constants C,; > 0 and
C2 > 0 such that for any t > 0,

(3.16) C{E(®) + [[u)|*) < X() < Co(E () + |[u(®)II*)

Proof. Since the second inequality of (3 16) holds trivially, 1t’s suf-
ficient to show the first mnequality of (3 16). Sumple calculations using
the Young imequality show that for some constant C' > 0,

(3.17) _CEW) < / wd(r)z - Vudz
. RN
and for any ¢ > 0 {may be small)
(3.18) —-e/ |ul*dz — C(e)/ ju)2dz < / onude.
RN RN JRY

Reporting (3.17) and (3 18) in (3.14) and noting that [ |u}*dz <
C{ fan |Vulldz + an |u|?dz} for some constant C > 0 and noting that
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a{x) > € > 0 in Qg, we get for any € > 0,

Xt > —e/ Iuizda:—~C’(e)/ |ue|2dz
RN RN
(€g

+— |ul?dz + (k - C)E(t)
2 O

%o _ 2 o 24, . 290 2
(40 e)/Bnlu] d:r:‘+ 1 /Qﬂluldx 5 RN{Vu] dzx

—C(e) /R luPdz + (k= C)E()

> mm{(% —€ ,-O?} /RN |u|?dx

+ (k -C - 2max{%€—q, C(e)}) E(t).

Therefore we can always choose a proper constant Cy > 01f € > 0 is
sufficiently small and & sufficiently large, which competes the proof of
the Lemma. a

Vv

4. Proof of Theorem 2.2

We recall that the method used to prove the Theorem essentially

relies on the multiplier technique and on some difference mnequalities
due to Nakao

Furst, let us denve the estimate of L2-norm ||u(t)|] of u(t) To this
end, we will use Proposition 3 2.
Indeed we have .

PROPOSITION 4.1. For a solution u(t) to the problem (1.1)-(1 2),
we have the estimate of L?-norm of u(t),
(N ~2)
(4.1) [u(t)l] < Clky, K, E(0))(1 + #)76-0=257
where 0 < r < 2/(N ~2), N > 3.

Proof. First we note from (3 1) that for any £t > 0

(4.2) /t/ o{z, ug)udzdi < E(0),
o JRrN
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that 1s,

[ e < 0m0) < o0

Using the Gagliardo-Nirenberg inequality (see Lemma 2.1), the
Holder inequality, {1.5) and (2.1), we obtain, for any ¢ > 0,

t
(4.3) // B(u)*dzds
0 JBg
¢
< ki / f (]2 dzds
0 JBg

t
2 13{1-8@ 2(r+1)8
< CK f el 1250 el [ 2202 ds

i
S CkaZ(r+l)0/ ”U:Hi(:;l)(l_g)ds
0
¢ 2(r+1 2!-0 ‘ 20(1—:12]—'-
rt 4
< o ([ ) ([ )
0 0

S CkaQ(r+1)9E(O)%l:Q(t + 1)26g::121—r

= Clky, K, B(0))(1 + t)3=tv-27

with # = Nr/(r + 1)(4 — (N ~ 2)r), where we have used 0 < r <
2/(N —2) (< 4/(N - 2))
Thus by Lemma 3.2 and (4.3), we have for ¢t > 0,

X(t) < X(0) + Clhr, K, EQ))(¢ + 1)= 737

that is,
(44) ()]} < Clky, K, E(0)(t + 1)@= F-57
where 0 < r < 2/(N —2) -

We are now in a position to prove Theorem 2.2
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Multiplymng equation (1.1) by u, and integrating over [¢,t+ 7] xRV,
t > 0, and recalling the definition of p(z, %), we have

t+7T
(45) / f p(fﬂ', Ut)utd.’ﬂds
¢ RV

t+1 t+7
= f / ﬁ(uz)u:dxd5+/ /a(x)lutlzda:ds
t Br t Qp

= E@{)—-E{t+T)= D+
Also multiplying equation (1.1) by u and integrating we have

(4.6) ]t - fk (Ve ~ fuf?)dmas

- / (wltu(®) i + Thuls + 7))z

t+T
— / / plz, u)udrds.
t RN

Next we note from(4.5) that

t+T
(4.7) / / luel2dds
t RN
T 4T
= / / Iu¢|2d:rds+/ /1ut]2d:cds
t Br t J QR

ax A 1
< / / e[ 2dzds + ~D(8)"+2.
t Bgr €0

Combining (4.6) and (4.7) yields
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t+T
(4.8)/t fRN(|ut12+ |Vul?)dzds

< / (e (8)ut) — we(t + Thult + T))de

ft+T/ (z ut)udmds+2/t+’r/B [ug|*dads + —D( yr+2
< C {lfue ()] + [lu(t + T ult + THI

N /t ”T /R o, )l [uldzds + /t - /; RidedeD(t)””}

= N(t) + L) + () + L(t) + Is(t).

Using the Holder mequality and {4.5), we get

2

(49) L(t) < ( /t+T /BR dmds) = ( /tm /BR Iutl’"“)
D(t)%

<

In order to estimate terms [,(¢) and I5(t), first, we observe that by
(4.7) and (4.9),

t+7
(4.10) f llusl Pds < C {D(t)* + D(t)"2)}
L
From the last mnequality, we easily see that
(4.11) ()] gc{D(sHD(s)%’} fort<s<t+T

Accordingly, using Proposition 4 1 and (4.11), we find that

(4.12)  L(t) + L(t) < C(1 + t)T=w=3m {D®) + D)%

.
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Finally, let us derive the estimate of I3(%).

(4.13) L) < k / o /B (e[ usfdzds

fHT /ﬂa a(z)|uy||uldzds

Ji(t) + Ja(t)

Il
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Using the Holder inequality and the similar way as in the proof of

Proposition 4.1 (see (cf. 4 3)), we have
(4.14) JLi(t)

t4T 3/ ptaT 3
< (/ / [ |2{r+l)dxds) (/ f ]u[2dxds>
Br t N

< C(kl,T, K, E(O))(l-}-t)ﬂé%\!}%ﬂ (f H t”2(r+1 (1-8)
t

r+2

IN

(N — t+T
Clk,, T, K, E0)(1+ t)‘zr-*—:;_(&_z;)r) (/ ||Utmié
t

IA

Clhr, T, K, E(Q))(1 + £) T34 D(g)(r+ D09
T2} 2—-(N-2)7)

= ClniT, K, B(0))(1+ 1) =04 D(t) = 7

)%

{r+1){1-2)
r+-2

with # = Nr/(r + 1)(4 — (N — 2)r), where we have used 0 < r <

2/(N —2) and

(4.15) Jo(t)

( / v fg e da:ds) ( / o /‘R ) |u;2dzds)

< Clh, T, K, EQ)(1 + t)y7a--m D(t) 5

IA
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Reporting {4.14) and (4.15) in (4.13) and combining (4 8), (4 9), (4 12)
and (4.13), we obtain

4T
(4.16) f E(s)ds
t
< C {(1 + t)i‘(?r—%_‘—%D(t) + D(t)* + D(t)"**

+(1+ ) TEF33 p() D=0 (1 +t)2_<44g”;3_1f7D(t)’—¥2}

r(N-—2) (r4+2){2~(N~2)r)
< CQ+)Twm {D(t) + D) cw-mr }

Applying Lemma 2.2 to the above inequality we obtain the esti-
mates in Theorem.
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