ENERGY DECAY FOR THE NONLINEAR WAVE EQUATION IN THE WHOLE SPACE WITH SOME DISSIPATION

Il Hyo Jung

Abstract

We study decay estimates of the energy for the nonlinear wave equation in the whole space. We note that the method of proof is based on the multipher technique and on the unique continuation, and no geometrical condition is imposed on the boundary.

1. Introduction

In this paper we consider the Cauchy problem for the nonlinear wave equation with a half-linear dissipation;

$$
\begin{align*}
& u_{t t}-\triangle u+\rho\left(x, u_{t}\right)=0 \quad \text { in } \mathbb{R}^{N} \times(0, \infty) \tag{1.1}\\
& u(x, 0)=u_{0}, \quad u_{t}(x, 0)=u_{1} \quad \text { in } \mathbb{R}^{N} \tag{12}
\end{align*}
$$

where $\rho(x, v)$ is some nonhmear function specified later. For the sequel, we need some notations We set $B_{r}=\left\{x \in \mathbb{R}^{N}| | x \mid<r\right\}$ and $\Omega_{r}:=$ $\mathbb{R}^{N} \backslash B_{r}$ for $r>0$.

Let $R>0$ be arbitrary fixed positive number and $a(x)$ be a nonnegative bounded function on \mathbb{R}^{N} such that

$$
\begin{equation*}
a(x) \geq \epsilon_{0}>0 \text { a.e for } x \in \Omega_{R} \tag{13}
\end{equation*}
$$

Recerved May 20, 2003 Revised November 4, 2003
2000 Mathematics Subject Classification 35B35, 35B40, 35L70
Key words and phrases nonlmear wave equation, energy decay, exterior problem, localized nonlmear dissipation

This work was supported by the Korea Research Foundation Grant(KRF-2002-041-C00024) and Pusan National University Research Grant

We now make the following hypotheses on the dissipative term $\rho(x, v)$.
Hyp. $\rho(x, v)$ is differentiable a.e. and nondecreasing function in v such that

$$
\begin{equation*}
\rho(x, v)=\tilde{\rho}(v) \chi\left(B_{R}\right)+a(x) v \chi\left(\Omega_{R}\right) \tag{1.4}
\end{equation*}
$$

where $\tilde{\rho}(v)$ satisfies

$$
\begin{equation*}
k_{0}|v|^{r+2} \leq \tilde{\rho}(v) v \leq k_{1}\left\{|v|^{r+2}+|v|^{2}\right\} \text { for }(x, t) \in B_{R} \times \mathbb{R}^{+} \tag{1.5}
\end{equation*}
$$

with $k_{0}, k_{1}>0,0 \leq r \leq 2 /(N-2)$ and $\chi(A)$ denotes the characteristic function of A

For example, $\tilde{\rho}(v)$ is a function hke $\tilde{\rho}(v)=|v|^{r} v$.
Condition (14) means that the dissipative term $\rho\left(x, u_{t}\right)$ has two character; linear and nonlinear More precisely, the dissipative term is the linear function $a(x) u_{t}$ on Ω_{R}, which is effective at infinity. On the other hand, it is the nonlnear function $\tilde{\rho}\left(u_{t}\right)$ on B_{R} satisfying (1.5). By reason of such two character, we may call the dissipation the half-linear dissipation, temporarıly.

The mann purpose of this paper is to mvestigate precise decay estimates of the energy for the problem (11)-(12).

The problem of proving decay estimates of the solutions to the wave equation with some dissipation has attracted a lot of attention in recent years. To our knowledge, these are the only results for the whole space, though the Klein-Gordon type wave equation with nonlinear dissipations like $\left|u_{t}\right|^{r} u_{t}$ have been treated by Nakao [4] and [5], Nakao and Jung [6], Nakao and Ono [7], Ono [8], and Mochızuki and Motai [3]. Recently, G Todorova [10] have analyzed the global existence and nonexistence conditions in details for the Cauchy problem.

2. Preliminaries and Statement of the Main Result

Throughout this paper we shall use the following notations .

$$
\|u\|_{p} \equiv\|u\|_{L^{p}(\Omega)}, \quad 1 \leq p<\infty
$$

$H^{m}(\Omega)(m \geq 0)$ denotes the usual Sobolev space with the norm

$$
\|f\|_{H^{m}(\Omega)}=\left(\sum_{|\alpha| \leq m}\left\|D_{x}^{\alpha} f(x)\right\|_{2}^{2} d x\right)^{\frac{1}{2}}<\infty
$$

where α is the multi-indices For simplicity, we will write $\|u\|$ for $\|u\|_{2}$.

Before stating our main result, let us recall the following wellposedness result, which is given by Lions and Strauss [2] and Nakao [4]

Theorem 2.1. Let $\left(u_{0}, u_{1}\right) \in H^{2}\left(\mathbb{R}^{N}\right) \times H^{1}\left(\mathbb{R}^{N}\right)$. Then, under Hyp., the problem (1.1)-(12) admits a unque solution $u(t) \in W^{2, \infty}\left([0, T) ; L^{2}\left(\mathbb{R}^{N}\right)\right) \cap W^{1, \infty}\left([0, T), H^{1}\left(\mathbb{R}^{N}\right)\right) \cap L^{\infty}\left([0, T), H^{2}\left(\mathbb{R}^{N}\right)\right.$ for any $T>0$.

Moreover, for the solution $u(t)$ to the problem (11)-(12), there exists a finte constant $K>0$ such that for any $T>0$,

$$
\begin{equation*}
\left\|\nabla u_{t}\right\|+\left\|u_{t}\right\| \leq K \text { for } t \in[0, T) \tag{2.1}
\end{equation*}
$$

The main result of this paper is as follows
Theorem 2 2. Let $\left(u_{0}, u_{1}\right) \in H^{2}\left(\mathbb{R}^{N}\right) \times H^{\prime}\left(\mathbb{R}^{N}\right)$ and $N \geq 3$. Assume that Hyp is satisfied and $N \geq 3$ Then the cnergy $E(t)$ for the problem (11)-(12) satisfy the followng decay properties
(1) If $0<r<2 / 3(N-2)$, then

$$
E(t) \leq C_{1}(1+t)^{-\gamma_{1}}
$$

with

$$
\begin{aligned}
\gamma_{1}= & \min \left\{\begin{aligned}
& \frac{(2-N) r^{2}+4(2-N) r+8}{2(r+2)(4-(N-2) r)} \\
&\left.\frac{3(2-N) r^{2}+2(8-3 N) r+8}{2(r+2)}\right\}
\end{aligned}\right.
\end{aligned}
$$

(ii) If $r=2 / 3(N-2)$ and $0<r<-2+2 \sqrt{N(N-2)} /(N-2)$, then

$$
E(t) \leq C_{1}(\log (2+t))^{-\gamma_{2}}
$$

with

$$
\gamma_{2}=\frac{2-(N-2) r}{2}
$$

The proof of Theorem 22 relies on the the following lemmas.
First, we need the following well-known lemma without proof here
LEMMA 2.1. (Gagliardo-Nurenberg) Let $1 \leq r<p \leq \infty, 1 \leq q \leq p$ and $0 \leq k \leq m$. Then we have the mequality

$$
\|v\|_{W^{k, p}} \leq c\|v\|_{W^{m, q}}^{\theta}\|v\|_{L^{r}}^{1-\theta} \text { for } v \in W^{m, p} \cap L^{r}
$$

with some $c>0$ and

$$
\theta=\left(\frac{k}{N}+\frac{1}{r}-\frac{1}{p}\right)\left(\frac{m}{N}+\frac{1^{-}}{r}-\frac{1}{q}\right)^{-1}
$$

provided that $0<\theta \leq 1(0<\theta<1$ if $p=\infty$ and $m q=N)$.
LEMMA 2.2. ([5]) Let $\phi(t)$ be a nonnegative function on $[0, \infty)$ satisfying the inequality

$$
\sup _{t \leq s \leq t+T} \phi(s) \leq C \sum_{\imath=1}^{2}(1+t)^{\theta_{\imath}}(\phi(t)-\phi(t+1))^{\epsilon_{2}}, t \geq 0
$$

with some $T>0, C>0,0<\epsilon_{i} \leq 1$ and $\theta_{i} \leq \epsilon_{i}, i=1,2$. Then $\phi(t)$ has the following decay property ${ }^{\text {. }}$
(1) If $0<\epsilon_{\imath} \leq 1$ and $\theta_{\imath}<\epsilon_{\imath}, \imath=1,2$, then

$$
\phi(t) \leq C_{0}(1+t)^{-\alpha}
$$

with $\alpha=\min _{\imath=1,2}\left\{\left(\epsilon_{\imath}-\theta_{2}\right) /\left(1-\epsilon_{2}\right)\right\}$
(2) If $\theta_{1}=\epsilon_{1}<1$ and $\theta_{2}<\epsilon_{2} \leq 1$, then

$$
\phi(t) \leq C_{0}(\log (2+t))^{-\frac{\epsilon_{1}}{1-\varepsilon_{1}}}
$$

3. Some Useful Inequalities

Throughout the remainder of this paper, C denotes different positive generic constants, independent of the initial data, in various occurrences.

In this section, we will derive some useful mequalities to prove Theorem

Lemma 3 1. Let $q(x)=\left(q_{1}(x), q_{2}(x), \ldots, q_{N}(x)\right) \in\left(W^{1, \infty}\left(\mathbb{R}^{N}\right)^{N}\right.$ be a vector field on \mathbb{R}^{N} and $\varphi(x)$ a proper function on \mathbb{R}^{N}. Then for a solution $u(t)$ to the problem (1.1)-(12), we have the following identities:

$$
\begin{align*}
& 0=\frac{d}{d t} E(t)+\int_{\mathbb{R}^{N}} \rho\left(x, u_{t}\right) u_{t} d x \tag{31}\\
& 0= \frac{d}{d t}\left\{\int_{\mathbb{R}^{N}} \varphi(x) u_{t} u d x+\frac{1}{2} \int_{\Omega_{R}} \varphi(x) a(x)|u|^{2} d x\right\} \\
&-\int_{\mathbb{R}^{N}} \varphi(x)\left|u_{t}\right|^{2} d x+\int_{\mathbb{R}^{N}} \nabla u \cdot \nabla(\varphi u) d x \tag{3.2}\\
&+\int_{B_{R}} \varphi(x) \tilde{\rho}\left(u_{t}\right) u d x \\
& 0= \frac{d}{d t}\left\{\int_{\mathbb{R}^{N}} u_{t} q(x) \cdot \nabla u d x\right\}+\frac{1}{2} \int_{\mathbb{R}^{N}} \nabla \cdot q(x)\left|u_{t}\right|^{2} d x \\
&-\frac{1}{2} \int_{\mathbb{R}^{N}} \nabla \cdot q(x)|\nabla u|^{2} d x+\int_{\mathbb{R}^{N}} Q_{N \times N} \nabla u \cdot \nabla u d x \tag{3.3}\\
&+\int_{\mathbb{R}^{N}} \rho\left(x, u_{t}\right) q(x) \cdot \nabla u d x,
\end{align*}
$$

where $Q_{N \times N}=\left(a_{2 \jmath}\right)$ is the $N \times N$ matrix with $a_{23}=\partial q_{\imath} / \partial x_{3}, \imath, \jmath=$ $1,2, \quad, N$ as its components

The proof of Lemma 3.1 is based on standard multipher technıque, using $u_{t}, \varphi(x) u$ and $q(x) \cdot \nabla u$ as multiphers, and the interested reader should refer to Komornk[1] or Nakao [5]

In order to obtain some estrmate, we prepare the following Propo-sition-

Proposirion 31. There exists $T_{0}>0$, independent of u, such that if $T>T_{0}$, then the mequality

$$
\begin{equation*}
\int_{0}^{T} \int_{B_{R}}|u|^{2} d x d t \leq C(T) \int_{0}^{T} \int_{\mathbb{R}^{N}} \rho\left(x, u_{t}\right) u_{t} d x d t+\epsilon \int_{0}^{T} E(t) d t \tag{3.4}
\end{equation*}
$$

holds for any $\epsilon>0$.

Proof. We shall use a contradiction method(cf. Nakao[5]). Assume that (3.4) does not hold. Then, there exists a sequence of solutions $\left\{u_{n}\right\}$ of the problem (1.1)-(13) such that

$$
\begin{align*}
\int_{0}^{T} \int_{B_{R}}\left|u_{n}\right|^{2} d x d t & \geq n \int_{0}^{T} \int_{\mathbb{R}^{N}} \rho\left(x, u_{n t}\right) u_{n t} d x d t \tag{3.5}\\
& +\epsilon \int_{0}^{T} E_{u_{n}}(t) d t,
\end{align*}
$$

where $E_{u_{n}}(t)$ is defined by $E(t)$ with u_{n} instead of u.
Setting

$$
\lambda_{n}^{2} \equiv \int_{0}^{T} \int_{B_{R}}\left|u_{n}\right|^{2} d x d t \text { and } v_{n}(t) \equiv \frac{u_{n}(t)}{\lambda_{n}}
$$

we get by (3.5),

$$
n \int_{0}^{T} \int_{\mathbb{R}^{N}} \frac{\rho\left(x, u_{n t}\right)}{\lambda_{n}} v_{n t} d x d t+\epsilon \int_{0}^{T} E_{v_{n}}(t) d t \leq 1
$$

where $E_{v_{n}}(t)$ is defined by $E(t)$ with u replaced by v_{n}.
Thus we obtain

$$
\begin{align*}
& \int_{0}^{T} \int_{B_{R}}\left|v_{n}\right|^{2} d x d t=1 \text { for all } n \geq 1, \tag{3.6}\\
& \int_{0}^{T} \int_{\mathbb{R}^{N}} \frac{\rho\left(x, u_{n t}\right)}{\lambda_{n}} v_{n t} d x d t \rightarrow 0 \text { as } n \rightarrow \infty \tag{37}
\end{align*}
$$

and

$$
\begin{align*}
\int_{0}^{T} E_{v_{n}}(t) d t & =\frac{1}{2} \int_{0}^{T} \int_{\mathbb{R}^{N}}\left(\left|v_{n t}\right|^{2}+\left|\nabla v_{n}\right|^{2}\right) d x d t \tag{3.8}\\
& \leq \frac{2}{\epsilon}<\infty .
\end{align*}
$$

These imply, applying Rellich compactness theorem and replacing the sequence v_{n} with a subsequence if needed, that
(3.9) $v_{n} \rightarrow v$ weak-star in $L^{\infty}\left([0, T] ; H_{0}^{1}\left(\mathbb{R}^{N}\right)\right) \cap W^{1, \infty}\left([0, T] ; L^{2}\left(\mathbb{R}^{N}\right)\right)$
(3 10) $v_{n} \rightarrow v$ strongly in $L^{2}\left([0, T] \times B_{R}\right.$

Therefore (3.6), (3.7), (3.9) and (3.10) lead to the following limit problem.

$$
\begin{equation*}
v_{t t}-\Delta v=0 \ln \mathbb{R}^{N} \times[0, T] \tag{311}
\end{equation*}
$$

with

$$
\begin{equation*}
\int_{0}^{T} \int_{B_{R}}|v|^{2} d x d t=1 \tag{3.12}
\end{equation*}
$$

and

$$
v_{t}(x, t)=0 \text { on } \operatorname{supp} a(\cdot) \times[0, T] .
$$

Since $\Omega_{R} \subset \operatorname{supp} a(\cdot)$, by a general result of unique continuation(cf. Tataru[9]), there exists $T_{0}>0$ such that if $T>T_{0}$,

$$
\begin{equation*}
v_{t}(x, t)=0 \text { on } \mathbb{R}^{N} \times[0, T] \tag{313}
\end{equation*}
$$

Noting that (313) means that $v(x, t)=v(x)$, independent of t and using (3.11), we have

$$
-\triangle v(x)=0 \text { in } \mathbb{R}^{N} .
$$

Since $v \in H^{1}\left(\mathbb{R}^{N}\right)$ and $N \geq 3, v(x)$ must be identically zero in \mathbb{R}^{N}, which is a contradiction to (312) This completes the proof of Proposition 3.1

From now on we set

$$
\begin{align*}
X(t) & =\int_{\mathbb{R}^{N}}\left(u_{t} \phi(r) x \cdot \nabla u d x+\alpha u_{t} u\right) d x \\
& +\frac{\alpha}{2} \int_{\Omega_{R}} a(x)|u|^{2} d x+k E(t) \tag{314}
\end{align*}
$$

Here α and $k>0$ are some constants, and $\phi(r), r=|x|$ is a Lupschitz contmuous function on $[0, \infty)$ as follows

$$
\phi(r)= \begin{cases}\epsilon_{0} & \text { if } r \leq R \\ \frac{\epsilon_{0} R}{r} & \text { if } r \geq R,\end{cases}
$$

where ϵ_{0} and R are positive constants given in (1.3)
Then we obtain the following(for proof, see [6]) :

Proposition 3.2. For $T>T_{0}$ and a large $k>0$, there exists some constants $\bar{\epsilon}_{1}>0$ and $\bar{C}>0$ such that the solution u of the problem (1.1)-(1.2) satisfies for any $t \geq 0$,

$$
\begin{align*}
& X(t+T)+k \int_{t}^{t+T} \int_{\mathbb{R}^{N}} \rho\left(x, u_{t}\right) u_{t} d x d s+\bar{\epsilon}_{1} \int_{t}^{t+T} E(s) d s \tag{3.15}\\
& \leq X(t)+\bar{C} \int_{t}^{t+T} \int_{B_{R}} \tilde{\rho}\left(u_{t}\right)^{2} d x d s
\end{align*}
$$

We observe that $X(t)$ is equivalent to $E(t)+\|u(t)\|^{2}$ if k is suffciently large Indeed, we have :

Lemma 3.2. For a large $k>0$, there exist constants $C_{1}>0$ and $C_{2}>0$ such that for any $t \geq 0$,

$$
\begin{equation*}
C_{1}\left(E(t)+\|u(t)\|^{2}\right) \leq X(t) \leq C_{2}\left(E(t)+\|u(t)\|^{2}\right) \tag{3.16}
\end{equation*}
$$

Proof. Since the second inequality of (316) holds trivially, it's sufficient to show the first mequality of (3 16). Simple calculations using the Young mequality show that for some constant $C>0$,

$$
\begin{equation*}
-C E(t) \leq \int_{\mathbb{R}^{N}} u_{t} \phi(r) x \cdot \nabla u d x \tag{3.17}
\end{equation*}
$$

and for any $\epsilon>0$ (may be small)

$$
\begin{equation*}
-\epsilon \int_{\mathbb{R}^{N}}|u|^{2} d x-C(\epsilon) \int_{\mathbb{R}^{N}}\left|u_{t}\right|^{2} d x \leq \int_{\mathbb{R}^{N}} \alpha u_{t} u d x . \tag{3.18}
\end{equation*}
$$

Reporting (3.17) and (318) in (3.14) and noting that $\int_{B_{R}}|u|^{2} d x \leq$ $C\left\{\int_{\mathbb{R}^{N}}|\nabla u|^{2} d x+\int_{\Omega_{R}}|u|^{2} d x\right\}$ for some constant $C>0$ and noting that

$$
\begin{aligned}
& a(x) \geq \epsilon_{0}>0 \text { in } \Omega_{R}, \text { we get for any } \epsilon>0 \\
& X(t) \geq-\epsilon \int_{\mathbb{R}^{N}}|u|^{2} d x-C(\epsilon) \int_{\mathbb{R}^{N}}\left|u_{t}\right|^{2} d x \\
& \quad+\frac{\alpha \epsilon_{0}}{2} \int_{\Omega_{R}}|u|^{2} d x+(k-C) E(t) \\
& \geq \\
& \geq\left(\frac{\alpha \epsilon_{0}}{4 C}-\epsilon\right) \int_{B_{R}}|u|^{2} d x+\frac{\alpha \epsilon_{0}}{4} \int_{\Omega_{R}}|u|^{2} d x-\frac{\alpha \epsilon_{0}}{2} \int_{\mathbb{R}^{N}}|\nabla u|^{2} d x \\
& \quad-C(\epsilon) \int_{\mathbb{R}^{N}}\left|u_{t}\right|^{2} d x+(k-C) E(t) \\
& \geq \min \left\{\left(\frac{\alpha \epsilon_{0}}{4 C}-\epsilon\right), \frac{\alpha \epsilon_{0}}{4}\right\} \int_{\mathbb{R}^{N}}|u|^{2} d x \\
& \\
& \quad+\left(k-C-2 \max \left\{\frac{\alpha \epsilon_{0}}{2}, C(\epsilon)\right\}\right) E(t) .
\end{aligned}
$$

Therefore we can always choose a proper constant $C_{1}>0$ if $\epsilon>0$ is sufficiently small and k sufficiently large, which competes the proof of the Lemma.

4. Proof of Theorem 2.2

We recall that the method used to prove the Theorem essentially relies on the multipher technique and on some difference inequalities due to Nakao

First, let us derive the estimate of L^{2}-norm $\|u(t)\|$ of $u(t)$ To this end, we will use Proposition 32.

Indeed we have .
Proposition 4.1. For a solution $u(t)$ to the problem (1.1)-(1 2), we have the estimate of L^{2}-norm of $u(t)$,

$$
\begin{equation*}
\|u(t)\| \leq C\left(k_{1}, K, E(0)\right)(1+t)^{\frac{r(N-2)}{2(4-(N-2) r)}} \tag{4.1}
\end{equation*}
$$

where $0 \leq r \leq 2 /(N-2), N \geq 3$.
Proof. First we note from (31) that for any $t>0$

$$
\begin{equation*}
\int_{0}^{t} \int_{\mathbb{R}^{N}} \rho\left(x, u_{i}\right) u_{t} d x d t \leq E(0) \tag{4.2}
\end{equation*}
$$

that is,

$$
\int_{0}^{\infty}\left\|u_{t}\right\|_{r+2}^{r+2} d t \leq C E(0)<\infty
$$

Using the Gagliardo-Nurenberg inequality (see Lemma 2.1), the Holder inequality, (1.5) and (2.1), we obtain, for any $t>0$,

$$
\begin{align*}
& \int_{0}^{t} \int_{B_{R}} \tilde{\rho}\left(u_{t}\right)^{2} d x d s \tag{4.3}\\
\leq & k_{1}^{2} \int_{0}^{t} \int_{B_{R}}\left|u_{t}\right|^{2(r+1)} d x d s \\
\leq & C k_{1}^{2} \int_{0}^{t}\left\|u_{t}\right\|_{r+2}^{2(r+1)(1-\theta)}\left\|u_{t}\right\|_{H^{1}\left(B_{R}\right)}^{2(r+1) \theta} d s \\
\leq & C k_{1}^{2} K^{2(r+1) \theta} \int_{0}^{t}\left\|u_{t}\right\|_{r+2}^{2(r+1)(1-\theta)} d s \\
\leq & C k_{1}^{2} K^{2(r+1) \theta}\left(\int_{0}^{t}\left\|u_{t}\right\|_{r+2}^{r+2} d s\right)^{\frac{2(r+1)(1-\theta)}{r+2}}\left(\int_{0}^{t} d s\right)^{\frac{2 \theta(r+1)-r}{r+2}} \\
\leq & C k_{1}^{2} K^{2(r+1) \theta} E(0)^{\frac{2(r+1)(1-\theta)}{r+2}(t+1)^{\frac{2 \theta(r+3)-r}{\tau+2}}} \\
\equiv & C\left(k_{1}, K, E(0)\right)(1+t)^{\frac{r(N-2)}{4-(N-2) r}}
\end{align*}
$$

with $\theta=N r /(r+1)(4-(N-2) r)$, where we have used $0 \leq r \leq$ $2 /(N-2)(\leq 4 /(N-2))$

Thus by Lemma 3.2 and (4.3), we have for $t \geq 0$,

$$
X(t) \leq X(0)+C\left(k_{1}, K, E(0)\right)(t+1)^{\frac{r(N-2)}{4-(N-2) r}}
$$

that is,

$$
\begin{equation*}
\|u(t)\| \leq C\left(k_{1}, K, E(0)\right)(t+1)^{\frac{r(N-2)}{2(4-(N-2) r)}} \tag{44}
\end{equation*}
$$

where $0 \leq r \leq 2 /(N-2)$

We are now in a position to prove Theorem 2.2

ENERGY DECAY FOR NONLINEAR WAVE EQUATION

Multiplying equation (1.1) by u_{t} and integrating over $[t, t+T] \times \mathbb{R}^{N}$, $t>0$, and recalling the definition of $\rho\left(x, u_{t}\right)$, we have

$$
\begin{align*}
& \int_{t}^{t+T} \int_{\mathbb{R}^{N}} \rho\left(x, u_{t}\right) u_{t} d x d s \tag{4.5}\\
= & \int_{t}^{t+T} \int_{B_{R}} \tilde{\rho}\left(u_{t}\right) u_{t} d x d s+\int_{t}^{t+T} \int_{\Omega_{R}} a(x)\left|u_{t}\right|^{2} d x d s \\
= & E(t)-E(t+T) \equiv D(t)^{r+2} .
\end{align*}
$$

Also multiplying equation (1.1) by u and integrating we have

$$
\begin{align*}
& \int_{t}^{t+T} \int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}-\left|u_{t}\right|^{2}\right) d x d s \tag{4.6}\\
= & \int_{\mathbb{R}^{N}}\left(u_{t}(t) u(t)-u_{t}(t+T) u(t+T)\right) d x \\
& -\int_{t}^{t+T} \int_{\mathbb{R}^{N}} \rho\left(x, u_{t}\right) u d x d s .
\end{align*}
$$

Next we note from(4.5) that

$$
\begin{align*}
& \int_{t}^{t+T} \int_{\mathbb{R}^{N}}\left|u_{t}\right|^{2} d x d s \tag{4.7}\\
= & \int_{t}^{t+T} \int_{B_{R}}\left|u_{t}\right|^{2} d x d s+\int_{t}^{t+T} \int_{\Omega_{R}}\left|u_{t}\right|^{2} d x d s \\
\leq & \int_{t}^{t+T} \int_{B_{R}}\left|u_{t}\right|^{2} d x d s+\frac{1}{\epsilon_{0}} D(t)^{r+2} .
\end{align*}
$$

Combining (4.6) and (4.7) yields
(4.8) $\int_{t}^{t+T} \int_{\mathbb{R}^{N}}\left(\left|u_{t}\right|^{2}+|\nabla u|^{2}\right) d x d s$

$$
\leq \int_{\mathbb{R}^{N}}\left(u_{t}(t) u(t)-u_{t}(t+T) u(t+T)\right) d x
$$

$$
-\int_{t}^{t+T} \int_{\mathbb{R}^{N}} \rho\left(x, u_{t}\right) u d x d s+2 \int_{t}^{t+T} \int_{B_{R}}\left|u_{t}\right|^{2} d x d s+\frac{2}{\epsilon_{0}} D(t)^{r+2}
$$

$$
\leq C\left\{\left\|u_{t}(t)\right\|\|u(t)\|+\left\|u_{t}(t+T)\right\|\|u(t+T)\|\right.
$$

$$
\left.+\int_{t}^{t+T} \int_{\mathbb{R}^{N}}\left|\rho\left(x, u_{t}\right)\right||u| d x d s+\int_{t}^{t+T} \int_{B_{R}}\left|u_{t}\right|^{2} d x d s+D(t)^{r+2}\right\}
$$

$$
\equiv I_{1}(t)+I_{2}(t)+I_{3}(t)+I_{4}(t)+I_{5}(t)
$$

Using the Holder inequality and (4.5), we get
(4.9) $\quad I_{4}(t) \leq\left(\int_{t}^{t+T} \int_{B_{R}} d x d s\right)^{\frac{r}{r+2}}\left(\int_{t}^{t+T} \int_{B_{R}}\left|u_{t}\right|^{r+2}\right)^{\frac{2}{r+2}}$

$$
\leq C D(t)^{2}
$$

In order to estimate terms $I_{1}(t)$ and $I_{2}(t)$, first, we observe that by (4.7) and (4.9),

$$
\begin{equation*}
\int_{t}^{t+T}\left\|u_{t}\right\|^{2} d s \leq C\left\{D(t)^{2}+D(t)^{r+2}\right\} \tag{4.10}
\end{equation*}
$$

From the last mequality, we easily see that

$$
\begin{equation*}
\left\|u_{t}(s)\right\| \leq C\left\{D(s)+D(s)^{\frac{r+2}{2}}\right\} \text { for } t \leq s \leq t+T \tag{4.11}
\end{equation*}
$$

Accordingly, using Proposition 41 and (4.11), we find that

$$
\begin{equation*}
I_{1}(t)+I_{2}(t) \leq C(1+t)^{\frac{r(N-2)}{2(4-(N-2) r)}}\left\{D(t)+D(t)^{\frac{r+2}{2}}\right\} . \tag{4.12}
\end{equation*}
$$

Finally, let us derive the estimate of $I_{3}(t)$.

$$
\begin{align*}
I_{3}(t) \leq & k_{1} \int_{t}^{t+T} \int_{B_{R}}\left|u_{t}\right|^{\tau+1}|u| d x d s \tag{4.13}\\
& +\int_{t}^{t+T} \int_{\Omega_{R}} a(x)\left|u_{t}\right||u| d x d s \\
\equiv & J_{1}(t)+J_{2}(t)
\end{align*}
$$

Using the Holder inequality and the similar way as in the proof of Proposition 4.1 (see (cf. 4 3)), we have
(4.14) $J_{1}(t)$

$$
\begin{aligned}
& \leq k_{1}\left(\int_{t}^{t+T} \int_{B_{R}}\left|u_{t}\right|^{2(r+1)} d x d s\right)^{\frac{1}{2}}\left(\int_{t}^{t+T} \int_{\mathbb{R}^{N}}|u|^{2} d x d s\right)^{\frac{1}{2}} \\
& \leq C\left(k_{1}, T, K, E(0)\right)(1+t)^{\frac{r(N-2)}{2(4-(N-2) r \boldsymbol{T}}}\left(\int_{t}^{t+T} \|\left. u_{t}\right|_{r+2} ^{2(r+1)(1-\theta)} d s\right)^{\frac{1}{2}} \\
& \leq C\left(k_{1}, T, K, E(0)\right)(1+t)^{\frac{r(N-2)}{2(4-(N-2) r)}}\left(\int_{t}^{t+T}\left\|u_{t}\right\|_{r+2}^{r+2} d s\right)^{\frac{(r+1)(1-\theta)}{r+2}} \\
& \leq C\left(k_{1}, T, K, E(0)\right)(1+t)^{\frac{r(1-2)}{2(4-(N-2) r)}} D(t)^{(r+1)(1-\theta)} \\
& =C(\stackrel{\gamma}{+}, T, K, E(0))(1+t)^{\frac{r(N-2)}{2(4-(N-2) T]}} D(t)^{\frac{(r+2)(2-(N-2) r)}{4-(N-2) T}}
\end{aligned}
$$

with $\theta=N r /(r+1)(4-(N-2) r)$, where we have used $0<r \leq$ $2 /(N-2)$ and

$$
\begin{align*}
& J_{2}(t) \tag{4.15}\\
\leq & C\left(\int_{t}^{t+T} \int_{\Omega_{R}}\left|u_{t}\right|^{2} d x d s\right)^{\frac{1}{2}}\left(\int_{t}^{t+T} \int_{\mathbb{R}^{N}}|u|^{2} d x d s\right)^{\frac{1}{2}} \\
\leq & C\left(k_{1}, T, K, E(0)\right)(1+t)^{\frac{r(N-2)}{2(4-(N-2)+\Gamma)}} D(t)^{\frac{r+2}{2}} .
\end{align*}
$$

Reporting (4.14) and (4.15) in (4.13) and combining (4 8), (4 9), (4 12) and (4.13), we obtain

$$
\begin{align*}
& \int_{t}^{t+T} E(s) d s \tag{4.16}\\
& \leq C\left\{(1+t)^{\frac{r(N-2)}{2(4-(N-2) r)}} D(t)+D(t)^{2}+D(t)^{r+2}\right. \\
& \left.+(1+t)^{\frac{r(N-2)}{2(4-(N-2) r)}} D(t)^{(r+1)(1-\theta)}+(1+t)^{\frac{r(N-2)}{2(4(N-2) r)}} D(t)^{\frac{r+2}{2}}\right\} \\
& \leq C(1+t)^{\frac{r(N-2)}{2(4-(N-2) r)}}\left\{D(t)+D(t)^{\frac{(r+2)(2-(N-2) r)}{4(-(N-2) r}}\right\} \text {. }
\end{align*}
$$

Applying Lemma 2.2 to the above inequality we obtain the estimates in Theorem.

Acknowledgement The author would like to thank the referee for kind comments on the first version

REFERENCES

[1] V. Komornk, Exact Controllabulity and Stabilzazon-The Multiplzer Method, John Wiley, New York/Masson, Paris, 1994
[2] J L Lions and W. A Strauss, Some non-linear evolution equations, Bull Soc Math France, 93 (1965), 43-96
[3] K. Mochuzukı and T Motal, On energy decay-nondecay problems for the wave equations with nonhnear dissipative term in R^{N}, J. Math Soc Japan 47(1995), 405-421.
[4] M Nakao, Energy decay of the wave equation with a nonlunear dussipatzve term, Funkcial Ekvac 26(1983), 237-250
[5] M. Nakao, Decay of solutions to the Cauchy problem for the Klenn-Gordon equation with a localzzed nonluner dissipatzon, Hokkaido Math. J. 27 (1998), 245-271
[6] M. Nakao and I. H Jung, Energy decay for the wave eqaution in the extermor domains with some half-linear dissipation, Differential and Integral Equations 16 (2003), 927-948
[7] M Nakao and K. Ono, Global exsstence to the Cauchy problem of the semalinear wave equation with a nonlinear dissipation, Funkcial Ekvac. 38 (1995), 417-431
[8] K. Ono, The tame decay to the Cauchy problem of the semalinear dissipative wave equatrons, Adv Math Sci. Appl 9 (1999), 243-262
[9] D Tataru, The X_{θ}^{s} spaces and unique continuation for solutions to the semılinear wave equatzon, Comm Partial Differential Equations 21(1996), 841887.
[10] G. Todorova, Stable and unstable sets for the Cauchy problem for a nonlinear wave equatzon with nonlincar damping and source terms, J Math Anal Appl 239(1999), 213-226

Department of Mathematics
Pusan Natıonal Unıversity
Pusan 609-735, Korea
E-maul ilhjung@pusan.ac.kr

