• Title/Summary/Keyword: Nonlinear Control Law

Search Result 417, Processing Time 0.025 seconds

A Suggestion of Nonlinear Fuzzy PID Controller to Improve Transient Responses of Nonlinear or Uncertain Systems

  • Kim, Jong-Hwa
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.87-100
    • /
    • 1995
  • In order to control systems which contain nonlinearities of uncertainties, control strategies must deal with the effects of them. Since most of control methods based on system mathematical models have been mainly developed focused on stability robustness against nonlinearities or uncertainties under the assumption that controlled systems are linear time invariant, they have certain amount of limitations to smartly improve the transient responses of systems disturbed by nonlinearities or uncertainties. In this paper, a nonlinear fuzzy PID control method is suggested which can stably improve the transient responses of systems disturbed by nonlinearities, as well as systems whose mathematical characteristics are not perfectly known. Although the derivation process is based on the design process similar to general fuzzy logic controller, resultant control law has analytical forms with time varying PID gains rather than linguistic forms, so that implementation using common-used versatile microprocessors cna be achieved easily and effectively in real-time control aspect.

  • PDF

Design of A Robust Adaptive Controller for A Class of Uncertain Non-linear Systesms with Time-delay Input

  • Nguyen, Thi-Hong-Thanh;Cu, Xuan-Thinh;Nguyen, Thi-Minh-Huong;Ha, Thi-Hoan;Nguyen, Dac-Hai;Tran, Van-Truong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1955-1959
    • /
    • 2005
  • This paper presents a systematic analysis and a simple design of a robust adaptive control law for a class of non linear systems with modeling errors and a time-delay input. The theory for designing a robust adaptive control law based on input- output feedback linearization of non linear systems with uncertainties and a time-delay in the manipulated input by the approach of parameterized state feedback control is presented. The main advantage of this method is that the parameterized state feedback control law can effectively suppress the effect of the most parts of nonlinearities, including system uncertainties and time-delay input in the pp-coupling perturbation form and the relative order of non linear systems is not limited.

  • PDF

Visual Tracking Control of Aerial Robotic Systems with Adaptive Depth Estimation

  • Metni, Najib;Hamel, Tarek
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.1
    • /
    • pp.51-60
    • /
    • 2007
  • This paper describes a visual tracking control law of an Unmanned Aerial Vehicle(UAV) for monitoring of structures and maintenance of bridges. It presents a control law based on computer vision for quasi-stationary flights above a planar target. The first part of the UAV's mission is the navigation from an initial position to a final position to define a desired trajectory in an unknown 3D environment. The proposed method uses the homography matrix computed from the visual information and derives, using backstepping techniques, an adaptive nonlinear tracking control law allowing the effective tracking and depth estimation. The depth represents the desired distance separating the camera from the target.

Nonlinear adaptive control of a quarter car active suspension (1/4 차 능동현가계의 비선형 적응제어)

  • Kim, Eung-Seok
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.4
    • /
    • pp.582-589
    • /
    • 1996
  • In this paper, an adaptive control problem of a hydraulic actuator for vehicle active suspension controller is divided into two parts: the inner loop controller and the outer loop controller. Inner loop controller, which is a nonlinear adaptive controller, is designed to control the force generated by the nonlinear hydraulic actuator acting under the effects of Coulomb friction. For simplicity of designing a nonlinear controller, the spool valve dynamics of a hydraulic actuator is reduced using a singular perturbation technique. The estimation error signal used to an indirect parameter adaptation is calculated without a regressor filtering. The absolute velocity of a sprung mass will be damped down by its negatively proportional term(sky-hook damper) adopted as an outer loop controller. Simulation results are presented to show the importance of controlling the actuator force and the validity of the proposed adaptive controller. (author). refs., figs. tab.

  • PDF

Robust Nonlinear Control for Minimum Phase Dynamic System by Using VSS (VSS 이론을 활용한 최소위상 비선형 시스템에 대한 강인성연구)

  • 임규만;양명섭
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.1
    • /
    • pp.95-100
    • /
    • 2001
  • In this paper, we proposed the robust control scheme for a class of nonlinear dynamical systems using output feedback linearization method. The presented control scheme is based on the VSS. We assume that the nonlinear dynamical system is minimum phase, the relative degree of the system is r<n and zero dynamics is stable. It is also shown that the global asymtotically stability is guaranted. And we verified that the proposed control scheme Is the feasible through a computer simulation.

  • PDF

Stability analysis for a dissipative feedback control law

  • Kang, Sung-Kwon
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.4
    • /
    • pp.869-876
    • /
    • 1995
  • Piezo devices such as piezoceramic patches knwon as collocated rate sensor and actuators are commonly used in control of flexible structure (see, e.g., [1]) and noise reduction. Recently, Ito and Kang ([4]) developed a nonlinear feedback control synthesis for regulating fluid flow using these devices.

  • PDF

Nonlinear Modification Scheme for Reducing Cautiousness of Linear Robust Control

  • Maki, Midori;Hagino, Kojiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.108-111
    • /
    • 1999
  • In this paper, we develope a composite control law for linear systems with norm-bounded time-varying parameter uncertainties, which consists of a basic linear robust control do-signed so as to generate a desired transient time-response for the worst-case parameter variation and a nonlinear modification term designed so as to reduce cautiousness of the linear robust control in an adaptive manner. The proposed controller is established such that the reduction of cautiousness of the linear robust control is well incorporated into the achievement of a good transient behavior.

  • PDF

Nonlinear Observer-based Control of Synchronous Machine Drive System

  • Sundrica, Marijo;Erceg, Igor;Maljkovic, Zlatko
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1035-1047
    • /
    • 2015
  • Starting from a new dynamic system description novel synchronous machine deterministic observers are proposed. Reduced and full order adaptive observer variations are presented. Based on the feedback linearization control law and the use of deterministic observer a novel control system is built. It meets the requirements of high performance tracking system. Adaptivity to stator and rotor resistance and the torque sensorless application is included. The comparison of the proposed novel control with conventional linear and nonlinear control systems is discussed. The given simulational study includes complete drive system integration.

Direct Learning Control for a Class of Multi-Input Multi-Output Nonlinear Systems (다입력 다출력 비선형시스템에 대한 직접학습제어)

  • 안현식
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.2
    • /
    • pp.19-25
    • /
    • 2003
  • For a class of multi-input multi-output nonlinear systems which perform a given task repetitively, an extended type of a direct leaning control (DLC) is proposed using the information on the (vector) relative degree of a multi-input multi-output system. Existing DLC methods are observed to be applied to a limited class of systems with the relative degree one and a new DLC law is suggested which can be applied to systems having higher relative degree. Using the proposed control law, the control input corresponding to the new desired output trajectory is synthesized directly based on the control inputs obtained from the learning process for other output trajectories. To show the validity and the performance of the proposed DLC, simulations are performed for trajectory tracking control of a two-axis SCARA robot.

Design of A Controller for Vehicle Active Suspensions Considering Driving Conditions (주행 상황을 고려한 차량 능동 현가장치 제어기 설계)

  • Cheon Jong-Min;Lee Jong-Moo;Kwon Soonman;Choi Young-Kiu
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.12
    • /
    • pp.698-704
    • /
    • 2005
  • Passive suspensions with fixed design constants are very restrictive in the inherent suspension problem, the trade-off between the ride quality and the suspension travel. Active suspensions are used to solve some drawbacks of passive suspensions. In this paper, we propose a controller design for vehicle active suspensions considering variable driving conditions. Our controller estimates the current driving conditions by detecting the road frequencies gotten from Fourier Transform and decides which factor must be emphasized between the ride quality and the suspension travel. In one case of focusing on the ride quality, we use the skyhook control law and in the other case of focusing on the suspension travel, the double skyhook control law is used. The control law modified by various road situations outputs the reference force value the electro-hydraulic actuator in active suspension system must generate. To track the reference force, we adopt the sliding control law which is very useful in controlling the nonlinear system like the electro-hydraulic actuator.