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Abstract

In this paper, we proposed the robust control scheme for a class of nonlinear dynamical systems
using output feedback linearization method. The presented control scheme is based on the VSS.
We assume that the nonlinear dynamical system is minimum phase, the relative degree of the
system is < n.and zero dynamics is stable. It is also shown that the global asymtotically
stability is guaranted. And we verified that the proposed control scheme is the feasible through a
computer simulation.
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1 . Introduction been developed for the effective control of
uncertain linear/nonlinear dynamical systems.

The robust control technique does not require
the exact functional natures and the accurate
parameter values of the system. The robust
control scheme including the variable structure
control is based on the construction of the
control effort overcoming the uncertainty.
Therefore, this control scheme needs a priori
knowledge of the uncertainty bounds. When
dealing with minimum phase nonlinear systems,

Nonlinear control has emerged as an area of
extensive research activity recently.[1]-[2]. An
important class of problems in this area
concerns the study of disturbance inputs for an
analysis and controller synthesis purposes.
Feedback stabilization of nonlinear systems at a
specified equilibrium is a central topic in control
theory and it has been a subject of research by
many authors, eg., seef3]-[5]. The works of €
Artstein, Sontag-Sussman(6), and Vidyasagar{7] a stable/unstable decomposition is usually used
are among the most significant contributions in and the controller must contain only the part
the study of stabilization using Lyapunov-like with stable inverse. Therefore, the problem of
techniques. The robust control approach has synthesizing control algorithms for plants with
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unstable zero dynamics is very important.
Recently, Hauser et al.[8] proposed a new control
design based on an approximate linearized model.
For many nonlinear systems, uncertainties are

common in control practice. So the design of a
robust controller that deals with a nonlinear
system with significant uncertainties is an
important subject. In particular, the systematic
design of output - feedback linearizable system
without matched conditions have been
conducted and three main extensions have been
proposed such as adaptive control[9], Lyapunov
based control[10]-[11], and variable structure
controlf12]. Many design tasks, such as tracking
and disturbance rejection problems, often use
high gain feedback to asymptotically achieve
the desired specifications[13]. Basically, above
of all the minimum phase condition must be
considered. In this paper, a robust control
scheme for a class of nonlinear dynamical
system is proposed by using output-feedback
linearization method proposed by Isidori et al.
The presented control scheme is based on the
VSS concept proposed by Utkin and Itkis. In this
control scheme, we assume that the nonlinear
dynamical system is minimum phase, i.e., the
relative degree of the system is # < » and the
zero dynamics is stable. It is also shown that the
global asymptotically stability is guaranted under
the proposed control scheme. The paper is
organized as follows. In section II, mathematical
tools is presented and discussed output feedback
linearization. - In section III, VSS controller is
presented and its stability analysis is shown in
the Lyapunov sense. In section IV, the
feasibility of the proposed control scheme is
verified through a computer simulation.

II. Mathematical Tools

Given f,a C” vector field on R”, and & a C”
scalar field on R" the Lie derivative of & with
respect to fis defined as the inner product of
the gradient of k with f

Ok 1)

Lih= Cdh,f> = 245" Fi.

We can see that L,k is also a C% scalar field

on R”. Higher order Lie derivatives can be
defined inductively as follows:
Lﬁh= L/(Lﬁ_lh): k=2)3r.”

Given f,g a C” vector fields on R, the Lie

" define

bracket [f, g] is a vector field defined by
- 08 ;_ 9f
[f.gl=>f— 5.8 2

where % and-%% are the Jacobians.

[, g] is also a C”vector field on R”. One can
iterated Lie brackets [/, [, gl1,
{£1f.[f,£)]] etc. The following notation is
standard:

ad;g = g
adig = [f, &)
adig = [f1f, gl

adig = [f, adt"'g]

The purpose of this section is to show how
single-input single-output nonlinear  systems
can be locally given, by means of a suitable
change of coordinates in the state space, a
normal form of special interest, on which several
important properties can be elucidated. The
point of departure of the whole analysis is the
notation of relative degree of the system,
which is formally described in the following
way.

The single-input single-output nonlinear system

x(t) = f(x(t)) + g(x(t)) ul¥)
y(8) = h(x(t)) (3)

is said to have relative degree » at a point x°
If ‘

(i) L,L%n(x) = 0 for all x in a neighborhood U
of x° and all k<(r—1

Gi) L,L7  rx) =0

where .the state x is assumed to belong to an
open neighborhood U of R”, f(x) and g(x) are
smooth vector fields on R”, ue R,ye R, and
(i.e., the origin is an equilibrium point). This ma

F(0)=0thematical property of relative degree
can bé summarized in the following theorem.

Theorem 2.1 The nonlinear system (3), with
fx) and g(x) being smooth vector fields, is
input—-state linearizable if, and only if, there
exists a region 2 such that the following
conditions hold

(i) the vector fields { g, adsg, -, ad; ' g ) are

linearly independent in £.
(i) the distribution



AEREH - AR B R H2E 1% 20001 /97

alx)=span { g, ad;g, -, ad; g )
is. involutive in £. Where 2 is an open and
connected subset of R" which includes the
origin.
Theorem 2.2 A nontrivial real-valued function
h(x) exists whose differential is a annihilator of
the distribution 2 (x) defined in theorem 2.1, i.e,,

dih(x)+0 and dh(x)- a{x) =0

if and only if system (3) satisfies the theorem 2.1.
We can see that theorem 2.2 is equivalent to
the fact that the function k(x), when interpreted
as the output of the system (3), produces a
relative degree » . From the above theorem 2.1
and 2.2, we can construct -the diffeomorphism
O(x)=[h(x),

Lok(x),, L7 (x), ¢ pp(x) oo, 6 ()17

which has the oproperty = @(0) =0, and
transforms the system (3) to the following
cannonical form

2 0 10-0][ 2 0
z:2 = 0 010 22 |+ 0 z, (4)
‘ér—l 0000 Ry—1 1
and
z,=a(z,¥)+ b(z,¥)u (5)
¢'r-+l Wr+1( z,¥)
L =1 - 6)
¢, wz,7T)

where ¥= w(0,¥) is zero dynamics and in
this paper we assume that it is stable(or
minimum phase system).

zZ= [21,"‘,Zr]T, v = [¢7+1"”:¢n]r
z;=h{x) =L (x) for i=1,-,7
a(z,¥) = Lih(x)] .o 02y

b(2,¥) = L,L7 ()| e sy

M. VSS Controller Design

In this section, we propose a control law
which guarantees that closed-loop system has
the uniformly ultimate bounded stability with a
tolerable tracking error. Because the states of
zero dynamics are not accessible, we consider
these states as bounded disturbances under

the assumption that zero dynamics is stable
and also we have no priori knowledge
concerning the magnitude of these disturbances.
The following assumptions are needed for the
development of a controller.

Assumption 1 Assume that zero dynamics is
stable(or nonlinear minimum phase). a(z,¥)

and b(z,¥ ) can be approximated as follows

a(z,¥)=a(z,0,)+ %(z,m )%

~ 9b
Wz, ¥)=al(ez,¥, )+ aw(z,lﬂo )3¥.

Assumption 2 There exists some positive
constant vector py,, py, such that

1-22(2, %, )8 T Il < pf, 1, (4, 2)

12529, )8 0l < 0F 1, (1, 2)

where
T
o1, = (o1 o1 P13)
- .
03, = (P31 Pn Pz)

are unknown parameter vectors and

wt 2= (1 0zl z1®)T .

From the above assumptions, the time derivative
of 2z, can be rewritten as

z2,=a(z, )+ 8 z, T)u+n(z,u, ) (7)
where

Wz, = 9% (2, 0) 80+ 35 (2, 0) s0u

Because control input #(#) must be bounded, the
norm of 7(z,u,t) can satisfy the following
inequality.

Hr(zu, Ol <ol 0, (¢ 2)

where ol = (7, 7, 73) is unknown parameter
vector and ¢, (¢, z) can be any positive vector
function. In this paper, we set ¢, (¢, z) to be the

same as u#,(t, z) as follows

e, 2) = (1 lizll lizl®)7.
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Throughout this paper, the nomm | -] is
assumed to be the Euclidean vector norm. Now
we utilize the VSS concept to derive a control
law. First let us define a sliding surface as
follows

s(zy, o z)=az+ o+ a, 2,2, (8)

where a;, 7= 1,---,r—1, are chosen so that the

following polynominals p(s) are Hurwitz
ps)=s"+a, s 1+ +a. 9

Now, we consider a following VSS-like type
control law

U= Uy T Uy, (10)

where u,, 1s the equivalent control input of the

nominal system, u, is the control input

overcoming the uncertainties ( or disturbance
which represent the term concerning zero
dynamics). We derive u,, from the fact that the

L 2

derivative of -2~s' along the trajectory of the

closed-loop system should be equal to zero and
uy is found such that

sis1< —Blisil, B>0. (1D

This inequality implies  that the trajectory
reaches the sliding surface in a finite time and
stays on the sliding surface thereafter. Now we
discuss how to derive the u,, and w, which

satisfy the above conditions. The time derivative
s can be expressed as

5(21'"2,) = a é] + ay Z’Z + -+ 2’77 = 0

= a2y ++a,-z,+al z, ¥,)

+ b(z, T )u+ 7(z,u, b

If we choose wu,, as follows

1

Wowy | Temm ez malz ) (12)

Uey=

then
s(zyz,) =8z, T)uy + 5( z,u, t). (13)

Now wu, is chosen by

wg= { 5,7t 2)+k) - sen(s)(14)

1
oz, ¥,)

where o, 1s estimate of ¢, . We can summarized

the controller structure as follows

- 1 _
U= U, + Wz, %) { —%&
— 5, 0.t 2) ) sgn(s) . (15)

Now the objective of control is to drive the
parameter - update law which guarantee that
z( ) converge to zero vector as time goes to
infinity. Therefore, we suggest the parameter
update-law as follows

7 = s sgnls)

7 = sllzll sgn(s)

7 = szl sgn(s) (16)
where
?1 = 5’\1 -n
h=nn
% = ?3 - 73

The stability of the proposed control law is
analyzed by the following theorem.

Theorem 3.3 Under the assumption [1]-{2], the
uncertain dynamical system (7) with a robust
control law (15) and parameter update law (16),
is globally uniformly ultimately bounded.

Proof: The proof is based on the Lyapunov-like
function
V= %( 4+ B+ R+, amn
Taking the. time derivative of V along the
trajectory of (13) yields
VS 3 n+ nrat By +sb(z,0) uy

+ Istol o (t, 2)
SHKT Rt R
—s( gyrqoy(t, z) + k) - sgn(s)

+1slol o (t, 2)

Snntrntnn
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- 5,,T o (t, z) sgn(s) — sksgn(s). =

From (17), V can be expressed as

Vs —kssgu(s) <0.

Therefore s—0 and z —0 as t— oo,

IV. Computer Simulation

In this section, computer simulations are
conducted to wverify the feasibility and
effectiveness of the proposed control scheme.
The following fourth-order nonlinear dynamical
system is used for a nonlinear plant.

X2 x; 0

= |% T 20ty + 2x4%, + 2%, (18)
xf + x4 1
x; + xi — x4 0

From the feedback linearization, we can derive
the following equations

yv=rhix)=1x = 2z

() _ 2
Yy = X T XX 2

@ e
yo= X =X 2

(B

v = xy =t (19

Using these new coordinates, we obtain the

following equations

2 =2

2y = 24

2y = zf +z,+u

9 (2, ¢) = wlz,¢9) = z

(20)

=x1+x§—x4=z, +z§—~z4

where the zero dynamics of the system is
z,=-2,. To derive a robust controller based on
VSS concepts, it can be easily verified that
L.L*h(x)#0 and thus relative degree of the
system is 3. We select sliding surface as follows

s= 2z, + 3z, + z;. (21)

Then the eqguivalent control input can be

expressed as follows

U= — (22, + 324 + 27). (22)
We choose u, as follows

us= (3, 9, (t z)+ k) sgn(s). (23)

and we set k& to be 1. Therefore the total
control input # and parameter update law can be
expressed as

"
u= —2z2y— 3z, — zy

- aqu,(t,z)sgn(s)—sgn(s) (240)

7 =5 - sgn(s)

7, = sllzllsgn(s)

7y = sllzll? sgn(s). (25)
Fig.1 shows a input of robust VSS controller,
and Fig.2 shows 2z, the state of zero dynamics.
The regulation of the state  trajectory
2(t)=(z, 2z, z;)" to zero vector is shown in
Fig.2 and corresponding estimate parameter
updation ¥, 7;, 73 are shown in Fig.3. From the

results, we can see that the proposed control
scheme is very effective.

Input

300
200( :
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200 P
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Fig.2. The states of 2y, 29, 24 2.
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Fig.3. The adaptation parameters of controller.

V. Conclusions

In this paper, a robust control scheme for
a class a uncertain nonlinear dynamical systems
has been proposed. The presented control
scheme is based on the VSS robust control
structure with an parameter adaptation law for
the uncertainty bounds. The uniformly ultimate
boundness of the control scheme is guaranted
and has been demonstrated by a simulation. In
the future, we will propose that robust controller
based on the proposed control scheme for
one-link or two-link flexible robot arm with the
vibration mode.
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