• Title/Summary/Keyword: Nonholonomic system

Search Result 79, Processing Time 0.036 seconds

A Study on Obstacle Avoidance Technology of Autonomous Treveling Robot Based on Ultrasonic Sensor (초음파센서 기반 자율주행 로봇의 장애물 회피에 관한 연구)

  • Hwang, Won-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.1
    • /
    • pp.30-36
    • /
    • 2015
  • This paper presents the theoretical development of a complete navigation problem of a nonholonomic mobile robot by using ultrasonic sensors. To solve this problem, a new method to computer a fuzzy perception of the environment is presented, dealing with the uncertainties and imprecision from the sensory system and taking into account nonholonomic constranits of the robot. Fuzzy perception, fuzzy controller are applied, both in the design of each reactive behavior and solving the problem of behavior combination, to implement a fuzzy behavior-based control architecture. The performance of the proposed obstacle avoidance robot controller in order to determine the exact dynamic system modeling system that uncertainty is difficult for nomadic controlled robot direction angle by ultrasonic sensors throughout controlled performance tests. In additionally, this study is an in different ways than the self-driving simulator in the development of ultrasonci sensors and unmanned remote control techniques used by the self-driving robot controlled driving through an unmanned remote controlled unmanned realize the performance of factory antomation.

Path Planning of a Free Flying Object and its Application for Gymnastic Robots

  • Nam Taek-Kun;Kim Yong-Joo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.1
    • /
    • pp.63-69
    • /
    • 2005
  • The motion of animals and gymnasts in the air as well as free flying space robots without thrusters are subjected to nonholonomic constraints generated by the law of conservation of angular momentum. The purpose of this paper is to derive analytical posture control laws for free flying objects in the air. We propose the bang-bang control method for trajectory planning of a 3 link mechanical system with initial angular momentum. This technique is used to reduce the DOF (degrees of freedom) at first switching phase and to determine the control inputs to steer the reduced order system to the desired position. Computer simulations for motion planning of an athlete approximated by 3 link, namely platform diving, are provided to verify the effectiveness of the proposed control scheme.

A New Sliding-Surface-Based Tracking Control of Nonholonomic Mobile Robots (새로운 슬라이딩 표면에 기반한 비홀로노믹 이동 로봇의 추종 제어)

  • Park, Bong-Seok;Yoo, Sung-Jin;Choi, Yoon-Ho;Park, Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.8
    • /
    • pp.842-847
    • /
    • 2008
  • This paper proposes a new sliding-surface-based tracking control system for nonholonomic mobile robots with disturbance. To design a robust controller, we consider the kinematic model and the dynamic model of mobile robots with disturbance. We also propose a new sliding surface to solve the problem of previous study. That is, since the new sliding surface is composed of differentiable functions unlike the previous study, we can obtain the control law for arbitrary trajectories without any constraints. From the Lyapunov stability theory, we prove that the position tracking errors and the heading direction error converge to zero. Finally, we perform the computer simulations to demonstrate the performance of the proposed control system.

Dynamic Robust Path-Following Using A Temporary Path Generator for Mobile Robots with Nonholonomic Constraints

  • Lee, Seunghee;Jongguk Yim;Park, Jong-Hyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.515-515
    • /
    • 2000
  • The performance of dynamic path following of a wheeled mobile robot with nonholonomic constraints has some drawbacks such as the influence of the initial state. The drawbacks can be overcome by the temporary path generator and modified output. But with the previous input-output linearization method using them, it is difficult to tune the gains, and if there are some modeling errors, the low gain can make the system unstable. And if a high gain is used to overcome the model uncertainties, the control inputs are apt to be large so the system can be unstable. In this paper. an H$_{\infty}$ controller is designed to guarantee robustness to model parameter uncertainties and to consider the magnitude of control inputs. And the solution to Hamilton Jacobi (HJ) inequality, which is essential to H$_{\infty}$ control design, is obtained by nonlinear matrix inequality (NLMI).

  • PDF

Autonomous Navigation Controller of Differential Drive Mobile Robots in Unknown Environments (불확실한 환경에서의 차륜 구동 이동 로봇의 자율 주행 제어기)

  • Yoon, Do-Young;Oh, Sang-Rok;Park, Gwi-Tae;Kim, Hwang-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2417-2419
    • /
    • 2003
  • 이동성에 nonholonomic 제약을 받는 차륜 구동 이동 로봇의 불확실한 환경에서의 자율 주행 제어기를 제안하였다. 전체 시스템은 on-line으로 지역경로 계획을 하는 planner 부분과 차륜 구동 이동 로봇의 nonholonomic 제약을 극복하면서 계획된 지역 경로를 충실히 추종하기 위한 제어기 부분의 두 부분으로 구성하였다. Planner는 빠른 응답을 생성하고, 전역적인 정보를 사용하지 않기 위하여 반사적인 제어 방식에 의한 경로 생성 방식을 채택하였고, 제어기 부분은 비선형 posture feedback stabilizer로 설계하였다. 제안된 시스템은 단순한 형태의 제어 방식으로 완전한 자율적인 판단에 의한 장애물 회피와 목표 지점으로의 수렴 능력을 보여 준다. 본 시스템의 단순하면서도 효과적인 자율주행 능력은 반사제어 방식의 장점과 feedback 제어기의 증명된 안정성에서 기인한다. 시뮬레이션과 자체 구현한 차륜 구동 이동 로봇인 "MARI"로 실제 환경에서의 실험을 실시하여 제안된 제어기의 유효성을 검증하였다.

  • PDF

Adaptive Sliding Mode Control for Nonholonomic Mobile Robots with Model Uncertainty and External Disturbance (모델 불확실성과 외란이 있는 이동 로봇을 위한 적응 슬라이딩 모드 제어)

  • Park, Bong-Seok;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1644-1645
    • /
    • 2007
  • This paper proposes an adaptive sliding mode control method for trajectory tracking of nonholonomic mobile robots with model uncertainties and external disturbances. The kinematic model represented by polar coordinates are considered to design a robust control system. Wavelet neural networks (WNNs) are employed to approximate arbitrary model uncertainties in dynamics of the mobile robot. From the Lyapunov stability theory, we derive tuning algorithms for all weights of WNNs and prove that all signals of an adaptive closed-loop system are uniformly ultimately bounded.

  • PDF

A berthing control for underwater vehicle with velocity constraints (속도구속조건을 이용한 수중 이동체의 접안제어)

  • Nam Taek-Kun;Kim Chol-Seong;Roh Young-Oh;Park Young-San
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.11a
    • /
    • pp.41-46
    • /
    • 2004
  • In this paper, we study the stabilization control if an underwater vehicle from its initial posture to its desired one. We assume tint the underwater vehicle has velocity constraint, i.e. it has no velocity component for some direction. Our approach is based on the nonholonomic system which am derived from velocity constraints that cannot integrable. We proposed a control strategy for posture control of the underwater vehicle using multi-rate digital control. The proposed control scheme is applied to the berthing control if an underwater vehicle and verified the effectiveness if control strategy by numerical simulation.

  • PDF

Modeling and Adaptive Motion Tracking Control of Two-Wheeled Welding Mobile Robot (WMR) (용접용 이륜 이동로봇의 모델링 및 적응 추종 제어)

  • Suh, Jin-Ho;Bui, Tring Hieu;Nguyen, Tan Tien;Kim, Sang-Bong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.786-791
    • /
    • 2003
  • This paper proposes an adaptive control algorithm for nonholonomic mobile robots with unknown parameters and the proposed control method is used in numerical simulations for applying to a practical twowheeled welding mobile robot(WMR). The proposed adaptive controller to track an arbitrary given welding path is designed by using back-stepping technique and is derived for a nonlinear model under the assumption such that the system parameters are partially known. Moreover, the proposed adaptive control system is stable in the sense of Lyapunov stability. Inertia moments of system are considered to be unknown parameters and their values can be estimated simply by using update laws proposed in an adaptive control scheme of this research. The simulation results are provided to show the effectiveness of the accurate tracking capability of the proposed controller for two-wheeled welding mobile robot with a smooth curved reference welding path.

  • PDF

Cooperative Particle Swarm Optimization-based Model Predictive Control for Multi-Robot Formation (군집 로봇 편대 제어를 위한 협력 입자 군집 최적화 알고리즘 기반 모델 예측 제어 기법)

  • Lee, Seung-Mok;Kim, Hanguen;Myung, Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.5
    • /
    • pp.429-434
    • /
    • 2013
  • This paper proposes a CPSO (Cooperative Particle Swarm Optimization)-based MPC (Model Predictive Control) scheme to deal with formation control problem of multiple nonholonomic mobile robots. In a distributed MPC framework, each robot needs to optimize control input sequence over a finite prediction horizon considering control inputs of the other robots where their cost functions are coupled by the state variables of the neighboring robots. In order to optimize the control input sequence, a CPSO algorithm is adopted and modified to fit into the formation control problem. Experiments are performed on a group of nonholonomic mobile robots to demonstrate the effectiveness of the proposed CPSO-based MPC for multi-robot formation.

Adaptive Sliding-Mode Formation Control and Collision Avoidance for Multi-agent Nonholonomic Mobile Robots with Model Uncertainty and Disturbance (모델 불확실성 및 외란을 갖는 이동 로봇들을 위한 적응 슬라이딩 모드 군집 제어 및 충돌 회피 기법)

  • Park, Bong-Seok;Park, Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.11
    • /
    • pp.1038-1043
    • /
    • 2010
  • In this paper, an adaptive sliding-mode formation control and collision avoidance are proposed for electrically driven nonholonomic mobile robots with model uncertainties and external disturbances. A sliding surface based on the leader-follower approach is developed to achieve the desired formation in the presence of model uncertainties and disturbances. Moreover, by using the collision avoidance function, the mobile robots can avoid the obstacles successfully. Finally, simulations illustrate the effectiveness of the proposed control system.