Browse > Article
http://dx.doi.org/10.5302/J.ICROS.2010.16.11.1038

Adaptive Sliding-Mode Formation Control and Collision Avoidance for Multi-agent Nonholonomic Mobile Robots with Model Uncertainty and Disturbance  

Park, Bong-Seok (Yonsei University)
Park, Jin-Bae (Yonsei University)
Publication Information
Journal of Institute of Control, Robotics and Systems / v.16, no.11, 2010 , pp. 1038-1043 More about this Journal
Abstract
In this paper, an adaptive sliding-mode formation control and collision avoidance are proposed for electrically driven nonholonomic mobile robots with model uncertainties and external disturbances. A sliding surface based on the leader-follower approach is developed to achieve the desired formation in the presence of model uncertainties and disturbances. Moreover, by using the collision avoidance function, the mobile robots can avoid the obstacles successfully. Finally, simulations illustrate the effectiveness of the proposed control system.
Keywords
formation control; leader-following approach; adaptive sliding mode control; collision avoidance;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 T. Dierks and S. Jagannathan, “Neural network control of mobile robot formations using RISE feedback,” IEEE Trans. Syst. Man, and Cybern., vol. 39, no. 2, pp. 332-347, Apr. 2009.   DOI   ScienceOn
2 J. M. Yang and J. H. Kim, “Sliding mode control for trajectory tracking of nonholonomic wheeled mobile robots,” IEEE Trans. Robot. Automat., vol. 15, no. 3, pp. 578-587, Jun. 1999.   DOI
3 T. Das and I. N. Kar, “Design and implementation of an adaptive fuzzy logic-based controller for wheeled mobile robots,” IEEE Trans. Control Syst. Technol., vol. 14, no. 3, pp. 501-510, May 2006.   DOI
4 J. J. Slotine and W. Li, Applied Nonlinear Control, Englewood Cliffs, NJ: Prentice-Hall, 1991.
5 T. Balch and R. C. Arkin, “Behavior-based formation control for multirobot team,” IEEE Trans. Robot. Automat., vol. 14, no. 6, pp. 926-939, Dec. 1998.   DOI
6 J. R. T. Lawton, R. W. Beard, and B. J. Young, “A decentralized approach to formation maneuvers,” IEEE Trans. Robot. Automat., vol. 19, no. 6, pp. 933-941, Dec. 2003.   DOI
7 J. P. Desai, J. Ostrowski, and V. Kumar, “Modeling and control of formations of nonholonomic mobile robots,” IEEE Trans. Robot. Automat., vol. 17, no. 6, pp. 905-908, Dec. 2001.   DOI
8 K. D. Do and J. Pan, “Nonlinear formation control of unicycletype mobile robots,” Robot. Auton. Syst., vol. 55, pp. 191-204, Mar. 2007.   DOI
9 P. Ogren, M. Egerstedt, and X. Hu, “A control Lyapunov function approach to multi-agent coordination,” Proc. IEEE Conf. Decision and Control, Orlando, FL, pp. 1150-1155, Dec. 2001.
10 M. A. Lewis and K. H. Tan, “High precision formation control of mobile robots using virtual structures,” Auton. Robots, vol. 4, no. 4, pp. 387-403, Oct. 1997.   DOI
11 J. Shao, G. Xiao, and Z. Cai, “Leader-following formation control of multiple mobile vehicles,” IET Control Theory Appl., vol. 1, no. 2, pp. 545-552, Mar. 2007.   DOI
12 L. Consolini, F. Morbidi, D. Prattichizzo, and M. Tosques, “Leader-follower formation control of nonholonomic mobile robots with input constraints,” Automatica., vol. 44, pp. 1343-1349, May 2008.   DOI   ScienceOn
13 M. Defoort, T. Floquet, A. Kokosy, and W. Perruquetti, “Slidingmode formation control for cooperative autonomous mobile robots,” IEEE Trans. Ind. Electron., vol. 55, no. 11, pp. 3944-3953, Nov. 2008.   DOI   ScienceOn
14 J. Fredslund and M. J. Mataric, “A general algorithm for robot formations using local sensing and minimal communication,” IEEE Trans. Robot. Automat., vol. 18, no. 5, pp. 837-846, Oct. 2002.   DOI