• Title/Summary/Keyword: Nonholonomic

Search Result 130, Processing Time 0.037 seconds

Path Following Control For Mobile Robots Using Model Algorithm Control (모델 알고리즘 제어를 이용한 이동 로봇의 경로 추적 제어)

  • Zhang, Yuanliang;Chong, Kil-To
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.261-262
    • /
    • 2007
  • This paper proposed a model algorithm control (MAC) method for trajectory tracking control of the differentially steeredwheeled mobile robots (WMRs) subject to nonholonomic constraint. The dynamic model of the wheeled mobile robot is presented and used as the model to be controlled. The performance of the proposed control algorithm is verified via computer simulations in which the WMR is controlled to track several different reference paths. It is shown that the control strategy is feasible.

  • PDF

Model Predictive Tracking Control of Wheeled Mobile Robots (모델 예측 추적을 이용한 이동 로봇의 경로 추적)

  • Gao, Yu;Chong, Kil-To
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.263-264
    • /
    • 2007
  • This paper presents a model predictive controller for tracking control of the wheeled mobile robots (WMRs) subject to nonholonomic constraint. The input-output feedback-linearization method and the mode transformation are used. The performance of the proposed control algorithm is verified via computer simulation. It is shown that the control strategy is feasible.

  • PDF

A study on the computer simulation model of the NONHOLONOMIC rotating motion system about the closed system (폐쇄된 계에서 비 흘로노믹 (NONHOLONOMIC) 회전 운동 SYSTEM에 대한 컴퓨터 씨뮬레이션 모델에 관한 연구)

  • Chung, Byung-Tae
    • Journal of the Korea Computer Industry Society
    • /
    • v.10 no.5
    • /
    • pp.221-226
    • /
    • 2009
  • The closed system's internal rigid body particle rotation motion can be distinguished by a main body that becomes the core of the rotation and the particles that are subjected to the rotation. The instance of particles becoming bounded to the main body as a holonomic system, has till now, been well defined and formulated in the study of Kinetics, and the structure of the formulas relate well to reality. However, when the structure is non-holonomic it deviates from these existing equations. The purpose of this research is to categorize the differences between a holonomic system and a non-holonomic system when rotating, through devices. With a special emphasis on the real phenomenon of the non-holonomic system which will be formulated in the form of a model or computer simulation. With these formulas, the center of mass shift in a closed rotating motion system and confined motion of external friction will be adequately expressed, so that it may be applied to computer graphics motions methods.

  • PDF

Analysis and Design of Jumping Robot System Using the Model Transformation Method

  • Suh Jin-Ho;Yamakita Masaki
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.200-210
    • /
    • 2006
  • This paper proposes the motion generation method in which the movement of the 3-links leg subsystem in constrained to slider-link and a singular posture can be easily avoided. This method is the realization of jumping control moving in a vertical direction, which mimics a cat's behavior. To consider the movement from the point of the constraint mechanical system, a robotics system for realizing the motion will change its configuration according to the position. The effectiveness of the proposed scheme is illustrated by simulation and experimental results.

Development of Stable Ballbot with Omnidirectional Mobility (전방향 이동성을 갖는 안정한 볼봇 개발)

  • Park, JaeHan;Kim, SoonCheol;Yi, Sooyeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.1
    • /
    • pp.40-44
    • /
    • 2013
  • The ball-shaped mobile robot, so called ballbot has single point contact on ground and low energy consumption in motion because of the reduced friction. In this paper, a new ballbot is presented, which has omnidirectional mobile platform inside of it as a driving system. Thus the ballbat has omnidirectional mobility without nonholonomic constraints. Kinematics and inverse kinematics of the ballbat is derived also in this paper.

Stability Analysis of Decentralized PVFC Algorithm for Cooperative Mobile Robotic Systems

  • Suh, Jin-Ho;Lee, Kwon-Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1909-1914
    • /
    • 2004
  • Passive velocity field control (PVFC) was previously developed for fully mechanical systems, in which the motion task was specified behaviorally in terms of a velocity field, and the closed-loop was passive with respect to a supply rate given by the environment input. However the PVFC was only applied to a single manipulator, the proposed control law was derived geometrically, and the geometric and robustness properties of the closed-loop system were also analyzed. In this paper, we propose a method to apply a decentralized control algorithm to cooperative 3-wheeled mobile robots whose subsystem is under nonholonomic constraints and which convey a common rigid object in a horizontal plain. Moreover it is shown that multiple robot systems ensure stability and the velocities of augmented systems convergence to a scaled multiple of each desired velocity field for cooperative mobile robot systems.

  • PDF

Design of BLDC Motor Controller for Electric Power Wheelchair

  • Chu, Jun-Uk;Moon, In-Hyuk;Choi, Gi-Won;Ryu, Jei-Cheong;Mun, Mu-Seong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1509-1512
    • /
    • 2003
  • The electric power wheelchair needs to control motor torque and speed for responding to variable actions given by handling a joystick. In this paper a DSP-based BLDC motor controller using a single dc-link current sensor is presented for electric power wheelchair. It is composed by a DSP processor and three-phase inverter module. To control torque, high speed current control is achieved by the PI controller and pulse width modulation (PWM) signals with 25 kHz carrier frequency, which is performed by 200 ${\mu}sec$ cycle. The speed controller computes the new direct current reference from the speed error and the PI control equation. The displacement value by handling the joystick is converted to reference speeds of right and left wheel motors using nonholonomic wheelchair kinematics. Experimental results show that the presented control system is enough to implement a speed servo in wheelchair driving.

  • PDF

Kinematic Modeling of Chained Form Mobile Robot

  • Han, Jae-Yong;Lee, Jae-Hoon;Yi, Byung-Ju;Kim, Whee-Kuk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2057-2062
    • /
    • 2003
  • Chained form mobile robots have been studied from the viewpoint of the control and analysis of nonholonomic mechanical systems in literature. However, researches for the detailed closed form kinematic modeling are rarely progressed. Nothing that a chained form mobile robot can be considered as a parallel system including several chains and wheels, the transfer method using augmented generalized coordinates is applied to obtain inverse and forward kinematic models of chained form mobile robots. Various numerical simulations are conducted to verify the effectiveness of the suggested kinematic model.

  • PDF

Formation Control for Unmanned Surface Vessels Using Lyapunov Redesign Method (Lyapunov 재설계 방법을 이용한 무인 수상정의 군집 제어)

  • Woo, Sangbum;Lee, Jaeyong
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.363-369
    • /
    • 2014
  • In this paper, a practical controller for a group of USVs is proposed in order to avoid matrix inversion problems in computation. Using nonlinear mapping, a formation composed of nonholonomic agents can be stabilized even when the formation is stationary. Since there is no matrix inversion in computing the control law, the computation complexity can be resolved. A controller for stabilizing the formation errors in the presence of model uncertainty is considered using the Lyapunov redesign method. The asymptotic stability of the formation errors is shown. It is also shown that the proposed controller can be applied to guide a formation to a different shape without modification.

Leader-following Approach Based Adaptive Formation Control for Mobile Robots with Unknown Parameters (미지의 파라미터를 갖는 이동 로봇들을 위한 선도-추종 방법 기반 적응 군집 제어)

  • Moon, Ssurey;Park, Bong-Seok;Choi, Yoon-Ho;Park, Jin-Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.8
    • /
    • pp.1592-1598
    • /
    • 2011
  • In this paper, a formation control method based on the leader-following approach for nonholonomic mobile robots is proposed. In the previous works, it is assumed that the followers know the leader's velocity by means of communication. However, it is difficult that the followers correctly know the leader's velocity due to the contamination or delay of information. Thus, in this paper, an adaptive approach based on the parameter projection algorithm is proposed to estimate the leader's velocity. Moreover, the adaptive backstepping technique is used to compensate the effects of a dynamic model with the unknown time-invariant and time-varying parameters. From the Lyapunov stability theory, it is proved that the errors of the closed-loop system are uniformly ultimately bounded. Simulation results illustrate the effectiveness of the proposed control method.