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Model Predictive Tracking Control of Wheeled Mobile Robots

Yu Gao, Kil To Chong
Division of Electronics and Information Engineering Chonbuk National University

Abstract - This paper presents a model predictive controller for tracking
control of the wheeled mobile robots (WMRs) subject to nonholonomic
constraint. The input-output feedback-linearization method and the mode
transformation are used. The performance of the proposed control
algorithm is verified via computer simulation. It is shown that the
control strategy is feasible.

1. Instruction

Tracking control of nonholonomic mobile robots aims at controlling
robots to tracking a given time varying trajectory. It is a fundamental
motion control problem and has been intensively investigated in the
robotic domain.

Model Predictive Control (MPC) is one of the frequently used
optimization control techniques in industry. It is an online optimization
algorithm that predicts system inputs based on current states and
system model, finds an open loop control profile by numerical
optimization, and applies the first control signal in the optimized control
profile to the systems.

Due to the use of MPC to the WMRs, the nonlinear system control
stability became one of the main problems. Such as [1], considers the
control stability by adding a terminal-state penalty to the cost function
and constraining the terminal state to a terminal-state region. Different
from them, our control approach presents some particularities. As a
result of the using of input-output linearization method [3], two
decoupled single-input single-output (SISO) systems are obtained. Then,
the discrete model is instead of the continuous one. And the linear
model predictive control is applied to the system for the trajectory
tracking.

2. Kinematics and dynamics

2.1 Kinematics
Figure.l presents a geometrical model of the wheeled mobile robot
defining the necessary variables to obtain the kinematic model.

Y

Figure.l

Let g=(x,y,%,0,.0,), the constraint equations can be written in the
form

Ag)g =0 5]
where
-sing cos¢g ~d 00
A(q)=|-cos¢ -sing -b r 0
—cosg¢ —sing b O r (2)

2.1 Dynamics
The Lagrange equations of motion (see[2]) of the robot are given by
M(q)j+V(q.4)q = E(q)r — A ()4 (3)
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where
m, 0 mdsing 0 0
0 m, -mdcos¢p O O
M(q)=|mdsing -mdcosg 1 [V ]
0 0 0 I, 0
0 0 0 0 1,
mdpcosg 00
mddsing 00 .
V(g.9)= 0 E(@={0 0 ,T=[r']
0 10 !
0 0 1

2.3 State Space Representation

Now consider the mechanical system given by (2) and (3). Since the
constrained velocity is always in the null space of A(g) , it is possible
to define n—m velocities #(t) =lv; v ... v,_,] such that

g = S(q)v(2) (4)
where v(t) =1y, v,]=16, 6).
Using the state space variable z=1[g v]” ,we have
X= I:f)v]+ [2]11 = f(x)+g(x)u ©)

where u=(STMS)™ 1877+ (87 M)~ §7(~ MI~ ES)v.

3. Input—output Feedback Linearization

It is convenient to define a coordinate frame X,— Y, at the centre of
mass of the robot, with X, in the forward direction of the robot. We
may choose an arbitrary point P, with respect to the robot coordinate
frame X,— Y, as a reference point. The mobile robot is to be controlled
so that the reference point follows a desired trajectory. Let the reference
point be denoted by (zz¥g) in the robot frame X,—Y, . Then the

world coordinates (Z,,¥,) of the reference point are given by

X, =X_+XpCOSP—y,sing &)
Y, =y, +x,8ing+ y, cosgd )

The appropriate output variables are defined as
y=n@ =[x, » T ]

QOur nonholonomic system (10) can be rewritten in the condensed form
x=f(x)+gxu

y=h(x) (9)

The necessary and sufficient condition for the system (9) to be

input-output linearized and controllable is that det(®) =0 (seel3]),
where @ is the decoupling matrix of the system

© =J,()S(q) (10)
where
oh {1 0 —(x,sing+yzcosg) 0 O
J(@=—= .
07 |0 1  x,cosg-ysing 0 O an
and
(D:[q)ll (Dl'li]
Q)ZI ¢22

D,, =c({(b—yg)cosp—(d+ x;)singp)
D, =c((b+ yg)cosg+(d +x,)sing)



D, =c((b—yg)sing + (d +x,)cos @)
D,, =c((b+yy)sing —(d +xz)cosg)

Since  the  determination of  the decoupling matrix is
Pd+z,)
det (®) ==——=,— , it is singular if and only if zp=4d, which is

not impossible. So choose the z, = d, we may decouple and linearize the
system.

u =@ (g)v—-D(gv) (12)
where the vector represents the external inputs, and is the vector of
wheels velocity.

Applying the nonlinear feedback law (12), we get a linearized and
decoupled system in the following form:

Y=y

Y2 =0y

13
(14)

4, Control Policy Design

After  input-output linearization, two decoupled single-input
single-output (SISO) system obtained: two second-order systems that
represent the position model. Thus, we have, respectively
1

G (9=

s (15)
1
G,0=5 (16)
4.1 Discretization of Position Model
The equivalent temporal representation of (15) is
y=u 17

where y is the output and » is the input. Defining the state variables
as z; =y and z, =y , (17) can be written in state-space as

[l o
s=0 o7

X=Ax+Bu
y=Cx

(18

In compact form

(19)
Discretizing (19) with sampling time h , the equivalent discrete time

system is
{xm =®x, +Tu,

Y =Cxy (20)

k+1
where #=e*  and F=/ eAlr1-Dpy
&

4.2 MPC design
Now, the MPC algorithm is based on the linear discrete-time
prediction model
X =Px, +Tu, 21
of the open-loop process, where z{(t)ER™ s the state vector at time

t, and ult)=R™ is the vector of manipulated variables to be
determined by the controlier, and on the solution of the finite-time
optimal control problem

min {lx'N Px,, +l§[x" Ox, +u', Ruk]}
2 2%

X =Ox, +Tu, k=0, ,N-1
X=X
U SU Su
Voin SCX, SV
where N is the prediction horizon, U={uy...u y_ ' ER™ is the
sequence of manipulated variables to be optimized, @=0 , R>0 and
P=0 are weight matrices of appropriate dimensions defining the
performance index, g, 4. SR", ER?, CER"™"(define
constraints on input and state variables, respectively, and “< " denotes
component-wise inegualities.

Then, we consider the problem where the output R’ in (20) is

5.t

(22)

Ymin’ Ymax

required to tracking a time-variable value y*SR” . The output errors is
regulated
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Uy, —y*=Cx -y* (23)
The idea of the moving-horizon control concept is to find the
control-variable value that minimize the receding horizon quadratic cost

function
Nl
min {%g[m - Qe - ) +u, Ru ]} )
where Qy =0 is the output weighting matrix
At the time & and for the current output u, , solve the optimal
control problem (23) over a fixed future interval [k,k+N—1] . Apply
u, , the first step in the resulting optimal control sequence to the

system and measure the ¥, Then, repeat the fixed horizon
optimization at time k+1 over the future interval [k+1,k+N—1].

5. Simulation

The first reference trajectory in the text is a circle defines as follows:
x, = 2cos(t)
y, = 2sin(z)

The weight parameter of the MPC control can affect the tracking
performance. For the persistent excitation trajectories, the parameters are
selected as follows:

0=0.1,R=1

The simulations were tested by MATLAB. The tracking results are

shown in Figure2
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Figure.2

6. Conclusion

In this paper, we have described the nonlinear system architecture of a
differential-drive ' WMR, focusing on its physical characteristic
(kinematics and dynamics). The input-output linearization and model
discretization are applied to it. And the proposed control law minimizes
the quadratic cost function consisting of tracking errors and control
effort. Finally, model predictive controller is used to allow a highly
accurate path tracking.

The simulation results were presented to illustrate the performance of
the controller and prove it is an adapt tracking control method.
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