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1. INTRODUCTION 

The traditional manipulation task is specified by means of a 
desired timed trajectory in the workspace, which the 
manipulator is required to track at every instant of time. 
However, there are many tasks in which the desired motions 
are specified by the state of system rather than time, such as 
contour following tasks, painting so on in which target point 
of the system should keep a contact with an environment. 
Indeed, it has been demonstrated in many researches[3][4] that 
in the presence of uncertainties, trajectory based contour 
tracking algorithms tend to exhibit the radial reduction 
phenomenon where the radius of the actual contour is smaller 
than the desired one. Moreover if the desired trajectory was 
specified in terms of time and rigid servo controller was 
implemented, the big forces would give damage to the system 
due to the tracking error. To encode a contour following task, 
the velocity field should have the following properties: 

(1) Its value at each point of the contour must be tangent 
to the contour 

(2) The flow of the field has a limit set which is 
contained in the contour 

Based on the considerations, passive velocity field control 
(PVFC) had been proposed by Li and the geometry of the 
controlled systems is analyzed.[3] The methodology encoded 
tasks using time invariant desired velocity fields instead of the 
more traditional method. To these ends, the formulation of 
PVFC has two distinct features as follows: 

(1) The task is encoded desired behavior of the 
mechanical system is specified in terms of velocity 
fields defined on the configuration manifold of the 
system. 

(2) The mechanical system under closed-loop control 
appears to be an energetically passive system to its 
physical environments. 

Note that the mechanical system is not required to be at a 
particular position at each time. Instead, the velocity field 
guides the robot to approach the contour in a well behaved 
manner. Moreover, the motivations for developing PVFC were 
to tackle robotic applications that require i) intimate 

interaction between the machine and uncertain physical 

environments and ii) the coordination between the various 

degrees of freedom of the machine for the task to be 

accomplished. The block diagram of PVFC can be shown in 

Fig. 1 and the key passivity and convergence properties of 
PVFC were summarized by Li. [3]

Fig. 1 Passive velocity field control 

However the PVFC algorithm applied to a single 
manipulator could not extend to multiple robot systems. 
Multiple robotic systems in coordination can execute various 
tasks which could not be done by a single manipulator such as 
the handling of a heavy object, etc. Moreover many control 
algorithms of robot systems have been proposed for the 
coordinated motion control of multiple robot systems. 
Therefore typical algorithms for multiple robot systems may 
be i) centralized control algorithm and ii) decentralized 

control algorithm. Especially, to overcome the problems of 
centralized control algorithm, several decentralized control 
algorithms have been proposed, in which each robot system is 
controlled by its own controller without explicit 
communication among the cooperative systems.  

In our pervious research[4], the decentralized 
implementation of PVFC including internal force control was 
proposed in a case where an object is grasped rigidly by 
multiple manipulators. In this paper, we propose a method to 
apply an original PVFC with some modification to 
cooperative mobile robotic systems which consist of two 
planar mobile robots which convey a common rigid object 
attached to the mobile robots with passive rotational joints in a 
horizontal plain. Each mobile robot is a 3-wheeled mobile 
robot and is under nonholonomic constraints. The 
specifications of proposed controller are as follows: 

(1) The center of the object follows a desired velocity 
field without external disturbances. 

(2) The orientation of the object tracks a desired value 
specified in terms of the position of center of an 
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object.
(3) Linear motion of an object has properties of a system 

controlled by an original PVFC. 
(4) Internal force is controlled in a certain direction. 

Moreover it is shown that multiple robot systems ensure 
stability and the velocities of augmented systems convergence 
to a scaled multiple of each desired velocity field for 
cooperative mobile robot systems. In this paper, we will focus 
on how to realize the specification above by decentralized 
PVFC controller though a centralized PVFC.  

2. WHEELED MOBILE ROBOTS 

We consider a 3-wheeled mobile robot with two 
conventional fixed wheels on the same axle and one 
conventional off-centered orientable wheel as shown in Fig. 2. 

The two conventional fixed wheels (  and ) have a fixed 

orientation while the orientation of wheel  is varying. 

Fig. 2 Configuration of a 3-wheeled mobile robot 

According to these descriptions, the geometry of the wheels is 
completely described by the following class; 

}3,2,1;,,,,,{ idlr iiii            (1) 

In Fig. 2, the motion of body of mobile robot is completely 

specified in terms of the position of reference point P , the 

position of robot ),( yx , and the rotation of body .

Therefore we know the vector  to indicate the motion of 

robot body: 
Tyx )(                       (2) 

Furthermore, we can introduce the generalized coordinate 
vector to describe the whole motion of robot in Fig. 2 as 
follows:

T
yxtq 321)(                (3) 

Using the generalized coordinate vector in eq.(3) and the 
kinematical constraints by the following constraints; i) pure 

rolling condition and ii) non-slipping condition, we can also 
represented the dynamic equation of a 3-wheeled mobile robot 
by 

mGftH )(),()()(                 (4) 

And it is easily shown that these constraints are nonholomic 
constraints for the system since two vector fields which satisfy 
the conditions are not involutive. 

If we assume some conditions and use the following 
coordinate change 

2

1 cossin yx
                   (5) 

and input transformation, we can obtain the simplified 
dynamic equation as follows: 
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where Tvvv )( 21  is a new input, and the constraints are 

also represented by 

1cossin

0sincos

yx

yx
                   (7) 

3. MULTIPLE WHEELED MOBILE ROBOTS 

3.1 Cooperative 3-wheeled mobile robots 

In this paper, the configuration of cooperative 3-wheeled 
mobile robots are shown in Fig. 3. In considered robot systems, 
an object denoted by a rod is connected to each mobile robot 
by a free joint without friction and the length of an object is 

L2 .

Fig. 3 Configuration of cooperative 3-wheeled mobile robots 

If we assume that mass and inertia of an object are m  and 

oI , and a position of the mass center and rotational angle of 

an object from 1IO  in counterclockwise direction are 

),( cc yx  and , then we have free dynamic equations of an 

object as follows: 

0ooxM                (2) 

0oI                 (3) 

where 
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T
cco yxx         (4) 

On the other hand, since the dynamic equation for two 
3-wheeled mobile robots can be described by the previous 
section which described the modeling of 3-wheeled mobile 
robot, an augmented dynamic equation is represented as 
follows: 
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for simplicity, 

)()(),()()( *** tuGFtH .       (6) 

where 
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T
mmtu 21)( ,

T
t 21:)( ,

T
t 211 )( ,

T
t 432 )( , and )4,3,2,1(,)( iti .

That is, each subscript number indicates a number of mobile 

robot except for i . As i  disappear alone in the following, 

we note that there should be no confusion. 
On the other hand, using the dynamic equations of an object 

and each mobile robot, the whole dynamic system without 
constraint introduced by passive joints can be represented as 
follows: 
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This equation is also rewritten by 

uGFxM wwww ,            (8) 

where the above term are 
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From the kinematic constraints by the passive joints, the 
holonomic constraints between the generalized coordinates are 
defined by 
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Using the differential of eq. (9) and eq. (10), and the definition 

of )2,1(),( iti , we can represent above equations as matrix 

form as follows: 
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for simplicity,  

0wwxJ                  (12) 

where 

)2,1(,
sincos

cossin
i

h

h
J
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i        (13) 

T
o IIJ 2222            (14) 

TLLLLJ cossincossin     (15) 

T
ow xx 21            (16) 

Therefore the actual dynamic equation for whole can be 
represented as follows: 

T
wwwww JuGFxM            (17) 

where 4  is a constraint force vector and it is also 

defined by 
T

21 ,
T

mm 211 ,
T

mm 432  (18) 

If we define the constraint force as above equations, eq. (18), 
the actual dynamic equation of whole system can be 
decomposed into the following equations using eq. (17): 

)2,1()(),()()( iJGftH i
T
imiiiiiiii   (19) 

T
ooo JxM               (20) 

T
o JI                (21) 

3.2 Minor loop compensation 

Since we assume that the constraint forces, )2,1(ii  are 

observed by each force sensor in our control method, then we 

can define a local control input, )2,1(imi  given by 

)2,1()( 11 iJHGJfvHG i
T
iiii

T
iiiiimi    (22) 

where )2,1(ivi  is new input and it will also be describe in 

the next. If we inject new control input iv  into cooperative 

3-wheeled mobile robot systems, then we can define the 
closed loop system substituting eq. (20) into eq. (21) 

)2,1()()( iJtvt i
T
iii           (23) 

Recomposing eq. (20), eq. (21), and eq. (23), the actual 
dynamic equation of whole system is described by the matrix 
form of the given equations 

T
wwww JtvGxM )(            (24) 

where 
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We note that the minor loop compensation is not necessary for 
the design of passive velocity field control, but the 
computation for the passive velocity field control would 
become very complex. 

Since the motions of ox  and  should be controlled in 

our control problem and the direct control input for  does 

not exist, the distributed control method proposed in our 
previous research[4] can not be applied for this paper directly. 
The dynamic equation is transformed by a coordinate 
transformation and input change in advance so that the 
dynamic system of  disappear in the equation. Therefore 

the control input for  is realized as an internal force for the 

motion of ox .

Let’s define ix  as follows: 

)2,1()( itJx iii             (27) 

Then, using the new coordinate ix , the actual dynamic 

equation of 3-wheeled mobile robots given by eq. (24) can be 
rewritten by the following equations 

)2,1(111 iJvxJJJxJ i
T
iiiiiiii       (28) 

Therefore the actual dynamic equation of whole system given 
by eq. (20), eq. (21), and eq. (28) can be represented by matrix 
form as follows: 
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Substituting ix defined by eq. (27) into eq. (12), we also 

obtain the following results 
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To represent the actual dynamic equation of whole system 

newly, we first define the matrix wJ  as follows: 
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At this time, pre-multiplying a matrix defined by eq. (31) in eq. 
(29), we can describe new dynamic equation of whole system 
as follows: 
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Moreover, using the generalized coordinates in eq. (11), 
T
cJ  to eq. (32) is also derived by 

0wcxJ                 (33) 

where 
T

ow xxxx 21            (34) 

Furthermore, if we define new input )(tvi  in eq. (22) as 

)2,1()()()( 111 iJJxJJJtv ii
T
iiiiiii    (35) 

then the dynamic equation of whole system, eq. (29), which is 

represented by new coordinate, ix  is simply described by 
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where )2,1(ii  is an actual control input. Finally, the 

dynamic equations in eq. (33) and eq. (36) can be represented 
as follows: 

T
c

T
ww JxM 00 1221        (37) 

0wcxJ                 (38) 

Using the generalized coordinate to eq. (9) - eq. (10) and the 
differentiation of these equations, we can derive the following 
equations from the relationship between the position of mass 

center 
T

cco yxx  and new coordinate )2,1(ixi  as 

follows:
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for simplicity, 

JIxxo 22221 0           (41) 

JIxxo 22222 0           (42) 

Furthermore, substituting the differentiations of eq. (41) and 
eq. (42) into eq. (37), we can also describe as follows: 

112222 )(0 JJIxo       (43) 

222222 )(0 JJIxo       (44) 

4. DECENTRALIZED CONTROLLER DESIGN 

In order to design the decentralized PVFC, we assume that 

 is measurable for each subsystem in this paper, which is a 

crucial step to derive the decentralized PVFC since  is 

determined based on both 1  and 2 , and both signals can 

not be used for each subsystem in the decentralized 

formulation. That is, it means that 1  can be used only in the 

subsystem 1 so on. 

Fig. 4 Conception of decentralized PVFC scheme 

The effectiveness of this assumption will be demonstrated 
in the simulation and experimental results, respectively. 
Furthermore, the decentralized PVFC scheme in this paper is 
shown in Fig. 4. 

4.1 Augmented mechanical system 

If the actual control input is defined as 

)(0 222211 JJI         (45) 

)(0 222222 JJI         (46) 

Then we can rewrite eq. (43) and eq. (44) as follows: 

)2,1(ix iio            (47) 

Adding the dynamic equation of ox  in eq. (36) and eq. (47), 

we can describe the motion equation of an object as follows: 

212222 )( oo xIMI          (48) 
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In eq. (48), it can be seen that the dynamic equation of mass 

center ox  is the same as that of connected three masses, 

22I , oM , and 22I , and the separated masses are 

controlled by 1  and 2 , respectively. 

Therefore we can apply a decentralized PVFC proposed in our 

previous researches to design )2,1(ii .[4][5]

First of all, the procedure in order to apply an individual 
PVFC algorithm can be designed that the motion equation in 
eq. (48) is separated as the following virtual dynamic equation 

1122 )( oo xMI             (49) 

2222 )( oo xMI            (50) 

for simplicity, 

)2,1(ixM ioi             (51) 

where )2,1(ii  is load sharing coefficient and it is 

satisfied with 121 .

The dynamics of the virtual flywheel is given by 

)2,1(ixM fwifwifwi           (52) 

where )2,1(ifwi is the coupling control input to the 

flywheel, which will be defined later on. Thus, the dynamics 
of the augmented system are composed as follows: 

)2,1(iXM aiaiai            (53) 

where 
T

fwioai xxX  is the velocity of the augmented 

system, ai  is the augmented control input, and aiM  is the 

augmented inertia matrix and is defined by 
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For each augmented configuration aiX , we define the kinetic 

energy of the augmented dynamic system aH  which is 

expressed in local coordinate by 
2

1
2

1

i

aiai
T
aia XMXH            (55) 

4.2 Generation of augmented desired velocity field 

For the augmented mechanical system, an augmented 

desired velocity field aiV  is needed. It is defined so that the 

following condition is satisfied:[3]

Condition 1: The augmented desired velocity field aiV

satisfies:
Conservation of kinetic energy: The total kinetic energy 

of the augmented system evaluated at the desired 
velocity field is constant, i.e., the following 

condition is satisfied for all aiX :

2
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where iE is a positive constant. 

Consistency: The component of the augmented velocity 
field that corresponds to the original dynamic 
equation of motion system should be the same as 

the specified desired velocity field, i.e., aiV  is of 

the form 
T

niai VVV 1           (57) 

Also, it is satisfied as follows: 
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Notice that )2,1(iEi  should be selected to be large 

enough so that eq. (58) has a real solution. It should now be 
apparent that the virtual inertia acts as a reservoir of kinetic 
energy.[3][4] 

4.3 Coupling control law 

As expressed by an original PVFC algorithm, the coordinate 
representations of these objects are 

aiaiai XMP , aiaiai VMQ , aiaiai VM     (59) 

where aiP , aiQ , and ai ( 2,1i ) are the momentums of 

the augmented system, the desired momentums of the 
augmented system, and the momentums of associated with the 
covariant derivative of the desired velocity field with respect 
to the actual robot velocities, respectively.  

Then the coupling control law in eq. (59) is given by 

)2,1()( iXRG aiaiiaiai          (60) 

where 
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T
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symmetricskew

T
aiai

T
aiaiai QPPQR             (62) 

and )2,1(ii  is a control gain, not necessary positive, 

which determines the convergence rate and the sense in which 
the desired velocity field will be followed. 

For any i , the local coordinate representation of the 

augmented i -velocity error ie  is defined by 

aiiaii VXe              (63) 

Thus, we can obtain the error dynamics for the augmented 
system in eq. (53) as follows: 

aiaiiiaiiai XReGeM            (64) 

Theorem 1: Consider the feedback system for decentralized 

PVFC as shown in Fig. 5 where the motion equation is given 

by eq. (51), and the individual PVFC control law consists of 

the virtual dynamic augmentation eq. (52) and coupling 

control law eq. (60)–eq. (62). Furthermore if the control input 

about control internal force is defined by 

0
)1(

di
fIi

F
k              (65)

and an actual control input about given system i  is also 

defined by 

)2,1(iIiaii            (66)

where Ii  is desired internal force and satisfies 

2

1

0
i

Ii                 (67)

Then the passivity and convergence properties of 

decentralized PVFC are summarized as follows: 

(1) The augmented feedback system in eq. (53) is passive 
with respect to the supply rate defined by 

xFxFxFs T,),(          (68)

where F and x  are input and output, respectively. 

(2) For the augmented i -velocity error ie  in eq. (63), 
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the velocity of an object aiX  is a Lyapunov stable 

solution in the absence of environment forces. 

Proof of (1): The derivation of kinetic energy defined by eq. 
(55) satisfies 
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Therefore, upon integration of eq. (69), we can obtain 
t

aaaai HHtHdttH
0

)0(0)0()()(      (70) 

Since 0)0(aH , the system is passive with respect to the 

supply rate in eq. (68). 

Proof of (2): Given , let’s define the positive definite 

storage function W  as follows: 
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Differentiating eq. (71), utilizing eq. (64) and the fact that 

aiai GM 2  is skew symmetric, we obtain 
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Since W  is a positive definite function of i -velocity error 

ie , we know that the augmented i -velocity error 0ie

is Lyapunove stable of the error dynamics using Barlalet’s 

lemma.[1][3]                   

5. SIMULATION RESULTS 

This section illustrates the performance of the proposed 
control algorithm for cooperative 3-wheeled mobile robots 
using numerical simulations. The considered dynamic models 
will use the similar ones for experiment and is shown in Fig. 4 
based on the constructed experimental system. 

Since the desired velocity field is defined such that if a 
point moves along the desired velocity, the point convergences 

to a circle whose center and radius are the origin and ][1 m  at 

a constant speed in an anti-clockwise direction. The control is 

used for both robots and load sharing parameters i  is set to 

0.5 since we assumed that each mobile robot has the same 

capability. For the observation of , we will use a minimal 

order observation which is designed based on triple integrator 
model where the pole of the observer was chosen to -50.  

When we are include the external force ])[0,10( N  to 

system from [sec]15  to [sec]20 , the simulation results for 

considered system are shown in Fig. 5-7, respectively.  

(a) trajectories          (b) trajectory angle 
Fig. 5 Trajectory and angle of cooperative mobile robots 

Fig. 6 Constraint forces     Fig. 7 Kinetic energy of  
With disturbance          augmented system 

6. CONCLUSIONS 

In this paper, we propose a new control methodology for 
cooperative 3-wheeled mobile robotic systems convey a rigid 
object, and the proposed decentralized control algorithm is 
analyzed using an original PVFC algorithm. Especially, the 
closed-loop input/output systems for multiple robotic systems 
are passive with the environment force as inputs, the system 
velocities as outputs, and the environment mechanical powers 
as supply rates as if it is similar to an original PVFC. The 
closed-loop systems for cooperative mobile robots are very 
effective in tracking a multiple of each desired velocity field 
and in counteracting the detrimental effect of environment 
disturbances when the disturbances are in the directions of the 
desired momentums of multiple robotic systems.  

Moreover, the application of decentralized PVFC algorithm 
to tracing a circle as well as simulation in order to show 
effectiveness for the extended PVFC algorithm proposed in 
this paper. 
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