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Abstract: Passive velocity field control (PVFC) was previously developed for fully mechanical systems, in which the motion
task was specified behaviorally in terms of a velocity field, and the closed-loop was passive with respect to a supply rate given by
the environment input. However the PVFC was only applied to a single manipulator, the proposed control law was derived
geometrically, and the geometric and robustness properties of the closed-loop system were also analyzed. In this paper, we propose
a method to apply a decentralized control algorithm to cooperative 3-wheeled mobile robots whose subsystem is under
nonholonomic constraints and which convey a common rigid object in a horizontal plain. Moreover it is shown that multiple robot
systems ensure stability and the velocities of augmented systems convergence to a scaled multiple of each desired velocity field for

cooperative mobile robot systems.
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1. INTRODUCTION

The traditional manipulation task is specified by means of a
desired timed trajectory in the workspace, which the
manipulator is required to track at every instant of time.
However, there are many tasks in which the desired motions
are specified by the state of system rather than time, such as
contour following tasks, painting so on in which target point
of the system should keep a contact with an environment.
Indeed, it has been demonstrated in many researches®®!™! that
in the presence of uncertainties, trajectory based contour
tracking algorithms tend to exhibit the radial reduction
phenomenon where the radius of the actual contour is smaller
than the desired one. Moreover if the desired trajectory was
specified in terms of time and rigid servo controller was
implemented, the big forces would give damage to the system
due to the tracking error. To encode a contour following task,
the velocity field should have the following properties:

(1) Its value at each point of the contour must be tangent
to the contour

(2) The flow of the field has a limit set which is
contained in the contour

Based on the considerations, passive velocity field control
(PVFC) had been proposed by Li and the geometry of the
controlled systems is analyzed.®! The methodology encoded
tasks using time invariant desired velocity fields instead of the
more traditional method. To these ends, the formulation of
PVFC has two distinct features as follows:

(1) The task is encoded desired behavior of the
mechanical system is specified in terms of velocity
fields defined on the configuration manifold of the
system.

(2) The mechanical system under closed-loop control
appears to be an energetically passive system to its
physical environments.

Note that the mechanical system is not required to be at a
particular position at each time. Instead, the velocity field
guides the robot to approach the contour in a well behaved
manner. Moreover, the motivations for developing PVFC were
to tackle robotic applications that require i) intimate
interaction between the machine and uncertain physical
environments and ii) the coordination between the various
degrees of freedom of the machine for the task to be
accomplished. The block diagram of PVFC can be shown in
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Fig. 1 and the key passivity and convergence properties of
PVFC were summarized by Li. !
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Fig. 1 Passive velocity field control

However the PVFC algorithm applied to a single
manipulator could not extend to multiple robot systems.
Multiple robotic systems in coordination can execute various
tasks which could not be done by a single manipulator such as
the handling of a heavy object, etc. Moreover many control
algorithms of robot systems have been proposed for the
coordinated motion control of multiple robot systems.
Therefore typical algorithms for multiple robot systems may
be i) centralized control algorithm and ii) decentralized
control algorithm. Especially, to overcome the problems of
centralized control algorithm, several decentralized control
algorithms have been proposed, in which each robot system is

controlled by its own controller without explicit
communication among the cooperative systems.
In our pervious research™,  the  decentralized

implementation of PVFC including internal force control was
proposed in a case where an object is grasped rigidly by
multiple manipulators. In this paper, we propose a method to
apply an original PVFC with some modification to
cooperative mobile robotic systems which consist of two
planar mobile robots which convey a common rigid object
attached to the mobile robots with passive rotational joints in a
horizontal plain. Each mobile robot is a 3-wheeled mobile
robot and is wunder nonholonomic constraints. The
specifications of proposed controller are as follows:
(1) The center of the object follows a desired velocity
field without external disturbances.
(2) The orientation of the object tracks a desired value
specified in terms of the position of center of an



object.
(3) Linear motion of an object has properties of a system
controlled by an original PVFC.
(4) Internal force is controlled in a certain direction.
Moreover it is shown that multiple robot systems ensure
stability and the velocities of augmented systems convergence
to a scaled multiple of each desired velocity field for
cooperative mobile robot systems. In this paper, we will focus
on how to realize the specification above by decentralized
PVEFC controller though a centralized PVFC.

2. WHEELED MOBILE ROBOTS

We consider a 3-wheeled mobile robot with two
conventional fixed wheels on the same axle and one
conventional off-centered orientable wheel as shown in Fig. 2.
The two conventional fixed wheels (@ and @) have a fixed
orientation while the orientation of wheel @ is varying.
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Fig. 2 Configuration of a 3-wheeled mobile robot

According to these descriptions, the geometry of the wheels is
completely described by the following class;
{r,l,d;,a;, B, ¢, ;i =123} (€))
In Fig. 2, the motion of body of mobile robot is completely
specified in terms of the position of reference point P, the
position of robot (x,y), and the rotation of body & .

Therefore we know the vector £ to indicate the motion of
robot body:

=(xy 0) @
Furthermore, we can introduce the generalized coordinate
vector to describe the whole motion of robot in Fig. 2 as
follows:

=0y 0 f ¢ ¢ &) 3)
Using the generalized coordinate vector in eq.(3) and the
kinematical constraints by the following constraints; i) pure
rolling condition and ii) non-slipping condition, we can also
represented the dynamic equation of a 3-wheeled mobile robot
by

H(P)s()+ f(B.¢) =GP, “
And it is easily shown that these constraints are nonholomic
constraints for the system since two vector fields which satisty
the conditions are not involutive.

If we assume some conditions and use the following
coordinate change

&, =—xsinf + ycosé

¢, =0
and input transformation, we can obtain the simplified
dynamic equation as follows:

®)
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v,)’ is a new input, and the constraints are
also represented by

xcos@+ ysind =0

where v=(y

0

—xsin@+ ycosd =g,

3. MULTIPLE WHEELED MOBILE ROBOTS

3.1 Cooperative 3-wheeled mobile robots

In this paper, the configuration of cooperative 3-wheeled
mobile robots are shown in Fig. 3. In considered robot systems,
an object denoted by a rod is connected to each mobile robot
by a free joint without friction and the length of an object is
2L .
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Fig. 3 Configuration of cooperative 3-wheeled mobile robots

If we assume that mass and inertia of an object are m and

1, , and a position of the mass center and rotational angle of
an object from O-1I, in counterclockwise direction are
(x.,y.) and ¢, then we have free dynamic equations of an

object as follows:

M5 =0 )
Lé=0 3)
where
m 0 T
M=\ ] = ) “)
m

On the other hand, since the dynamic equation for two
3-wheeled mobile robots can be described by the previous
section which described the modeling of 3-wheeled mobile
robot, an augmented dynamic equation is represented as
follows:

[Hl(ﬂl) 0 J[ﬁl(t)]"'[fl(ﬂl’m)J
0 Hy(B,) \112 (1) J2(Br:12) )
:(lel) 0 J[rj
0 Gy (B N\ T2
for simplicity,
H (B +F (B,m) =G (Bu(r) . (6)

where



u(t):(rml z'mz)Ta 77(1)3:(771 772)T> 77|(t):(§1 é‘-/z)T7

m)=(¢ &) Land G eR(1=1,2,3,4).
That is, each subscript number indicates a number of mobile
robot except for ;. As ¢, disappear alone in the following,

we note that there should be no confusion.

On the other hand, using the dynamic equations of an object
and each mobile robot, the whole dynamic system without
constraint introduced by passive joints can be represented as
follows:

5

H'(B) 0y, 0| 0@ (F(Bm) (G
Ops M, O] X,@) |+ 0 =10 u@®. @
Oy Opp 1, \ @) 0 0
This equation is also rewritten by
M3, +F,=Gu, (3)
where the above term are
H(B) 0, 0 F'(B.m) G
M,=| 0, M, O, F,=| 0 |, G,=|0
Ol><4 01><2 ]o 0 0

i, =00 50 ¢, n0)=n0 no).
From the kinematic constraints by the passive joints, the
holonomic constraints between the generalized coordinates are

defined by
x| (x—hsing ) (x.—Lcosp ©)
¥,) \y +hcos6, | |y, +Lsing
)EZ _ X, —hsin 6, _ xC+LCf)sgo (10)
Y, ¥, +hcosé, Y. —Lsing

Using the differential of eq. (9) and eq. (10), and the definition
of 7,(¢),(i=1,2) , we can represent above equations as matrix

form as follows:

t 0
Ji 0y " Et)) 02Xl
A LB e ay
0,y J Yo || O
2x2 2 ¢ 0
=J,
for simplicity,
JH'XW = O (12)
where
—sing, —hcos6, .
J. = L (=12 (13)
cosf;, —hsind,
Ja:(_12><2 _[2x2)T (14)
Jy :(—Lsin(p —Lcosp Lsing LCOS(D)T (15)
Xy = (771 7 %, (/’)T (16)

Therefore the actual dynamic equation for whole can be
represented as follows:

M, +F,=Gu-JA 17

where 1e®R* is a constraint force vector and it is also
defined by

ﬂ’:(ﬂ’l ﬂ’Z)T> ﬂlz(ﬂ“ml ﬂmZY’ 22:(/1»13 ﬂ'm4)T (18)
If we define the constraint force as above equations, eq. (18),
the actual dynamic equation of whole system can be
decomposed into the following equations using eq. (17):

H (B0 + f,(Bn) =GBt —J 4 (=12) (19)
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Mi, =-J A
1,p=-J)A

(20)
e2))

3.2 Minor loop compensation
Since we assume that the constraint forces, A, (i=12) are

observed by each force sensor in our control method, then we
can define a local control input, z,,; (i=1,2) given by

T =G (Hy+ fi+J[A) =G HJ 4y (i=12)  (22)
where v, (i=1,2) is new input and it will also be describe in
the next. If we inject new control input v, into cooperative

3-wheeled mobile robot systems, then we can define the
closed loop system substituting eq. (20) into eq. (21)

B =v()-JTA (=12) 23)
Recomposing eq. (20), eq. (21), and eq. (23), the actual
dynamic equation of whole system is described by the matrix
form of the given equations

M,%, =Gv({t)-JIA (24)
where
12><2 12><2 02><2
—W _ Iy, ’ —w _ 0,2 Iy, (25)
Mn 02><4
Io 01><4
V= (Vl vy Oy O)T (26)

We note that the minor loop compensation is not necessary for
the design of passive velocity field control, but the
computation for the passive velocity field control would
become very complex.

Since the motions of x, and ¢ should be controlled in

our control problem and the direct control input for ¢ does
not exist, the distributed control method proposed in our
previous research™! can not be applied for this paper directly.
The dynamic equation is transformed by a coordinate
transformation and input change in advance so that the
dynamic system of ¢ disappear in the equation. Therefore
the control input for ¢ 1is realized as an internal force for the

motion of x, .
Let’s define x, as follows:
X =Ja0) (i=1,2) @7
Then, using the new coordinate );c,. , the actual dynamic

equation of 3-wheeled mobile robots given by eq. (24) can be
rewritten by the following equations

JIx% = I T = —J A (i=1,2) (28)
Therefore the actual dynamic equation of whole system given

by eq. (20), eq. (21), and eq. (28) can be represented by matrix
form as follows:

Ji! %) (=
75 S A

Mu 3 o 02><1

I, \ ¢ 0



Vi ‘]lT 02><2 ﬂ“ml
_| 2 | |02 Iy | A (29)
- T

02><l ']o /lm3

0 Jy Ana

Substituting 3;51' defined by eq. (27) into eq. (12), we also
obtain the following results

J;l 3;51 02><1

-1 N 0
a7 o] 2 (30)

Iy, Xo 02

INg 0

To represent the actual dynamic equation of whole system

newly, we first define the matrix J, ,» as follows:

JT
T

Jo=| h G
I 2x2

1
At this time, pre-multiplying a matrix defined by eq. (31) in eq.
(29), we can describe new dynamic equation of whole system
as follows:

JTa x| (=770 0,
J5T 5! X, - Iy 030,05,
M, i 0
I, \ ¢ 0
JTy, Ly At (2)
_|2 TVz _ Dya | A
1o —1ho Iy | s
0 Jy s
=J!

Moreover, using the generalized coordinates in eq. (11),
J, CT to eq. (32) is also derived by

Jx, =0 (33)
where
=& % x of (34)

Furthermore, if we define new input v;(¢¥) ineq. (22) as
V(=T v = LT 5O =T A (=12 (39)

then the dynamic equation of whole system, eq. (29), which is

represented by new coordinate, x; is simply described by

12><2 _1
12><2 )._5.2
M, X,
]0 ¢
Vi Iy, A
| LIyy || Ao 36)
02 —lh Lo | Aa
0 Jy s

where v, (i=1,2) is an actual control input. Finally, the

dynamic equations in eq. (33) and eq. (36) can be represented
as follows:

My, =(v, v, 0y, 0 -J'2 (37)

whw

Jx,=0 (38)

Using the generalized coordinate to eq. (9) - eq. (10) and the
differentiation of these equations, we can derive the following
equations from the relationship between the position of mass

center x, =(xc yC)T and new coordinate X; (i=12) as

follows:
X, —sing, —hcosé, —Lsi
{Q _|~sinG C?S A 4 smg & (39)
Ve cosf, —hsing )\ &, —Lcosg
=Jym 22 ::(lm 05,5 )J4,.
X, —sind, —hcos@ Lsi
).‘L _|~smno&; C‘?’S b\ &5 + sme P (40)
Ve cos@, —hsinb, \J, Lcosg
NI
=1, =%, s (U )J¢
for simplicity,
X, =X+ (]2><2 Ozxz)J(Ab 41
%, =X+ (02><2 e )J(p(/’ (42)

Furthermore, substituting the differentiations of eq. (41) and
eq. (42) into eq. (37), we can also describe as follows:

X, = (I2><2 0,2 )(J(p(b + Jq;(/}) =vi—4 (43)
X, - (02><2 szz)(J<a¢5 + Jﬂ’) =v,—4 (44)

4. DECENTRALIZED CONTROLLER DESIGN

In order to design the decentralized PVFC, we assume that
¢ is measurable for each subsystem in this paper, which is a

crucial step to derive the decentralized PVFC since ¢ is
determined based on both 4, and A, , and both signals can

not be used for each subsystem in the decentralized
formulation. That is, it means that 4, can be used only in the

subsystem 1 so on.

Augmeiited robotic system
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Fig. 4 Conception of decentralized PVFC scheme

The effectiveness of this assumption will be demonstrated
in the simulation and experimental results, respectively.
Furthermore, the decentralized PVFC scheme in this paper is
shown in Fig. 4.

4.1 Augmented mechanical system
If the actual control input is defined as

vi=vi— (]2><2 05,2 )(J¢¢ + jﬂ’) (45)

el (LSO AP 8 ) (46)
Then we can rewrite eq. (43) and eq. (44) as follows:

X,=vi—-4 (i=12) (47)

Adding the dynamic equation of x, in eq. (36) and eq. (47),
we can describe the motion equation of an object as follows:
(12><2 + Mo + IZXZ)jéa = Vl’ + Vé (48)
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In eq. (48), it can be seen that the dynamic equation of mass
center x, is the same as that of connected three masses,

M,

o

Iy, , and [,, , and the separated masses are

controlled by v; and v}, respectively.
Therefore we can apply a decentralized PVFC proposed in our
previous researches to design v; (i =1, 2) 1B

First of all, the procedure in order to apply an individual

PVFC algorithm can be designed that the motion equation in
eq. (48) is separated as the following virtual dynamic equation

(I2><2 +pIM0)).C.0 :Vl/ (49)

(]2><2+p2Mo)x.o+:V£ (50)
for simplicity,

M5, =v (i=1,2) (51)

where p; (i=1,2) is load sharing coefficient and it is
satistied with p, + p, =1.

The dynamics of the virtual flywheel is given by
(i=12) (52)

where v, (i=1,2) is the coupling control input to the

M i i =V i

flywheel, which will be defined later on. Thus, the dynamics
of the augmented system are composed as follows:

MuX, =v, (i=12) (53)

where X, = (xu x fw,.)r is the velocity of the augmented
system, V!, is the augmented control input, and M, is the
augmented inertia matrix and is defined by
M= (54
0 M Swi

X ., we define the kinetic

ai

For each augmented configuration

energy of the augmented dynamic system H. .+ which is
expressed in local coordinate by
2
— 1 or—, -
H ZZEXZ:'MaiXai (55)

4.2 Generation of augmented desired velocity field
For the augmented mechanical system, an augmented
desired velocity field ¥, is needed. It is defined so that the

following condition is satisfied:

Condition 1: The augmented desired velocity field 7,

satisfies:

Conservation of kinetic energy: The total kinetic energy
of the augmented system evaluated at the desired
velocity field is constant, i.e., the following
condition is satisfied for all X, :

ZZAJM"

where E, is a positive constant.

=E >0 (56)

Consistency: The component of the augmented velocity
field that corresponds to the original dynamic
equation of motion system should be the same as

the specified desired velocity field, i.e., V, is of
the form

Also, it is satisfied as follows:
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2 = 1 —
- \/—<E,- -~V M)
Mg, 2
Notice that E, (i=12)
enough so that eq. (58) has a real solution. It should now be
apparent that the virtual inertia acts as a reservoir of kinetic
energy. 14!

v,

n+l

(58)

should be selected to be large

4.3 Coupling control law
As expressed by an original PVFC algorithm, the coordinate
representations of these ob]ects are

P M X Qaz - al al H K Manat (59)
where P, , Q,,-, and A, (i=1,2) are the momentums of

the augmented system, the desired momentums of the
augmented system, and the momentums of associated with the
covariant derivative of the desired velocity field with respect
to the actual robot velocities, respectively.

Then the coupling control law in eq. (59) is given by

V. =(G,+7.R)X, (i=1,2) (60)
where
C_;(zi(XaiaXai)=_—(Zai§$_éaiK{zi) (61)
2F,;
skew symmetric
Qal ai Qal (62)
Zara CdEa

skew symmetric
and y; (i=1,2) is a control gain, not necessary positive,

which determines the convergence rate and the sense in which
the desired velocity field will be followed.
For any «; € R, the local coordinate representation of the

augmented a; -velocity error e, is defined by

—-aV,.

€ i’ ai

, (63)
al
Thus, we can obtain the error dynamics for the augmented

system in eq. (53) as follows
Meé, =G.e +y,Rw

ai lll ai~ai (64)
Theorem 1: Consider the feedback system for decentralized
PVFC as shown in Fig. 5 where the motion equation is given
by eq. (51), and the individual PVFC control law consists of
the virtual dynamic augmentation eq. (52) and coupling
control law eq. (60)—eq. (62). Furthermore if the control input
about control internal force is defined by

, Fy

Vi :(1+kf)[ 0 j (65)
and an actual control input about given system Vv is also
defined by

vi=vi+vy (i=12) (66)
where vy s desired internal force and satisfies

2

S =0 G

i=1
Then the passivity and convergence properties of

decentralized PVFC are summarized as follows:
(1)  The augmented feedback system in eq. (53) is passive
with respect to the supply rate defined by
s(F,%)=<F,x>=F"x (68)
where F and x are input and output, respectively.

(2)  For the augmented «a;-velocity error e, ineq. (63),



the velocity of an object Xai

solution in the absence of environment forces.

is a Lyapunov stable

Proof of (1): The derivation of kinetic energy defined by eq.
(55) satisﬁes

d 1

—Hl, =Y (XM, X, +—XIMX
dt ai ZZI:( 2 al)
=y ! Mx +X 4 M 4% ,)+— XalM X (69)
; Swi T fwi fiv Z
= =
_Z‘Xat ai ZXatGalX +XatRatX =0
s
Therefore, upon integration of eq. (69), we can obtain
[ Hiutds = 1,0~ H,(0) =0 >, (0) (70)

Since H.(0)>0,
supply rate in eq. (68).
Proof of (2): Given a R, let’s define the positive definite

storage function Wa

— !
- Ze Mal ai

Differentiating eq. (71), utilizing eq. (64) and the fact that
M, +2G,

the system is passive with respect to the

as follows:

(71)

is skew symmetric, we obtain

= _Z(eazM;Ieaz +e, Mc,uém + e, Mazem)
=0
- zyz(XzZI;RalXa atVaZ;R Xaz)

(72)

72 oy, (4H E,— <<V . X . >>2)
i=1
<0

/4

Since W,

is a positive definite function of ¢; -velocity error

e, » we know that the augmented ¢; -velocity error e, =0
is Lyapunove stable of the error dynamics using Barlalet'’s

lemma. B |

5. SIMULATION RESULTS

This section illustrates the performance of the proposed
control algorithm for cooperative 3-wheeled mobile robots
using numerical simulations. The considered dynamic models
will use the similar ones for experiment and is shown in Fig. 4
based on the constructed experimental system.

Since the desired velocity field is defined such that if a
point moves along the desired velocity, the point convergences
to a circle whose center and radius are the origin and 1[m] at
a constant speed in an anti-clockwise direction. The control is
used for both robots and load sharing parameters p, is set to
0.5 since we assumed that each mobile robot has the same
capability. For the observation of ¢, we will use a minimal
order observation which is designed based on triple integrator
model where the pole of the observer was chosen to -50.

When we are include the external force (10,0)[N]
system from 15[sec] to 20[sec],
considered system are shown in Fig. 5-7, respectively.

to

the simulation results for
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Fig. 7 Kinetic energy of
augmented system

6. CONCLUSIONS

In this paper, we propose a new control methodology for
cooperative 3-wheeled mobile robotic systems convey a rigid
object, and the proposed decentralized control algorithm is
analyzed using an original PVFC algorithm. Especially, the
closed-loop input/output systems for multiple robotic systems
are passive with the environment force as inputs, the system
velocities as outputs, and the environment mechanical powers
as supply rates as if it is similar to an original PVFC. The
closed-loop systems for cooperative mobile robots are very
effective in tracking a multiple of each desired velocity field
and in counteracting the detrimental effect of environment
disturbances when the disturbances are in the directions of the
desired momentums of multiple robotic systems.

Moreover, the application of decentralized PVFC algorithm
to tracing a circle as well as simulation in order to show
effectiveness for the extended PVFC algorithm proposed in
this paper.
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