• Title/Summary/Keyword: Nondestructive Detection

Search Result 449, Processing Time 0.025 seconds

Study on Signal Processing in Eddy Current Testing for Defects in Spline Gear (스플라인 기어부 결함의 와전류검사 신호처리에 관한 연구)

  • Lee, Jae Ho;Park, Tae Sung;Park, Ik Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.3
    • /
    • pp.195-201
    • /
    • 2016
  • Eddy current testing (ECT) is commonly applied for the inspection of automated production lines of metallic products, because it has a high inspection speed and a reasonable price. When ECT is applied for the inspection of a metallic object having an uneven target surface, such as the spline gear of a spline shaft, it is difficult to distinguish between the original signal obtained from the sensor and the signal generated by a defect because of the relatively large surface signals having similar frequency distributions. To facilitate the detection of defect signals from the spline gear, implementation of high-order filters is essential, so that the fault signals can be distinguished from the surrounding noise signals, and simultaneously, the pass-band of the filter can be adjusted according to the status of each production line and the object to be inspected. We will examine the infinite impulse filters (IIR filters) available for implementing an advanced filter for ECT, and attempt to detect the flaw signals through optimization of system design parameters for detecting the signals at the system level.

Laboratory Experiments for Evaluating Necking Defects in Bored Piles Embedded in Sandy Soils Using Electromagnetic Waves (전자기파를 이용한 모래 지반에 설치된 현장타설말뚝의 네킹 결함 평가를 위한 실내 모형실험)

  • Lee, Jong-Sub;Kim, Youngdae;Yu, Jung-Doung
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.5
    • /
    • pp.25-34
    • /
    • 2020
  • Studies on nondestructive evaluation methods using electromagnetic waves have been commonly conducted to evaluate necking defects in bored piles. However, the propagation of electromagnetic waves are affected by water contents of surrounding materials. This study aims to investigate a suitability of electromagnetic waves for evaluating necking defects in bored piles embedded in sandy soils through laboratory experiments. Laboratory experiments are performed with a model pile having a necking defect. The diameter and length of model pile are 600 mm and 1 m, respectively, and the model pile is embedded in sandy soils with different water contents of 10%, 20%, and 30%. For the propagation of electromagnetic waves, a transmission line is configured in reinforcement cage using an electrical wire. The generation and detection of electromagnetic waves are conducted using a time domain reflectometer. Experimental results show that the peak amplitude of electromagnetic waves reflected at the necking defect decreases with an increase in the water content in sandy soils. In addition, the velocity of electromagnetic waves reflected from the toe of the model pile decreases win an increase in the water content. However, estimated locations of the necking defects are almost the same to that of the actual location of the necking defect. This study demonstrates that electromagnetic waves may be an effective method for evaluating necking defects in bored piles embedded in sandy soils

Elemental Analysis by Neutron Induced Nuclear Reaction - Prompt Gamma Neutron Activation Analysis for Chemical Measurement - (중성자 핵반응을 이용한 원소 검출기술 - 즉발감마선 중성자 방사화분석법을 이용한 검출기술 -)

  • Song, Byung Chul;Park, Yong Joon;Jee, Kwang Yong
    • Analytical Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.1041-1051
    • /
    • 2003
  • Neutron induced prompt gamma activation analysis (PGAA) offers a nondestructive, sensitive and relatively rapid method for the determination of trace and major elements and is proven to be convenient for online analysis of minerals, metals, coal, cement, petrochemical, coating, paper as well as many other materials and products. The technique has found many uses in medicine, industry, research, security and the detection of contraband items. This report reviews the present status and future trends of the PGAA techniques. Requirements for the system are neutron source, high resolution HPGe detectors with a high-voltage power supply, an amplifier, analog-to-digital converter, and a multichannel analyzer for the detection and measurement of prompt ${\gamma}$-ray emit form the neutron capture elements. Introducing a ${\gamma}$-${\gamma}$ coincidence system also improves the quality of the ${\gamma}$-ray spectrum by suppressing the background created from the Compton scattering of high energy prompt ${\gamma}$-rays. A PGAA system using a $^{252}Cf$ neutron source is currently under construction for the on-line measurement of several elements in aqueous samples at KAERI. The system can be applied for the detection of chemical weapons and explosives as well as various narcotics.

Optimal Geophysical Exploration Performance Method for Common Detection Behind a Sewer (하수관로 배면 공동 탐지를 위한 최적 물리탐사 방법)

  • Kim, Jinyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.8
    • /
    • pp.11-17
    • /
    • 2018
  • Recently, road subsidence has been increasing in urban areas, threatening the safety of citizens. In the lower part of the road, various road facilities such as water supply and drainage pipelines and telecommunication facilities are buried, and the deterioration of the facilities causes the road subsidence. Especially, in the case of old sewer which are attracting attention as a main cause of ground subsidence, the risk of subsidence is calculated indirectly through CCTV exploration. Currently, we are finding cavity through GPR exploration. However, it is difficult to find the sewer back cavity because it is explored from the surface of the road. Thus, the nondestructive cavity exploration techniques was investigated in this study and we confirmed the applicability through experiments on the test-bed. In this study a new quantitative method is proposed to detect the cavity around sewer.

Measurement of Internal Defects of Pressure Vessels using Unwrapping images in Digital Shearography (Digital Shearography 에서 Unwrapping 이미지와 FEM 을 이용한 압력용기의 내부결함 측정)

  • Kim, Seong-Jong;Kang, Young-June;Sung, Yeon-Hak;Ahn, Yong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.1
    • /
    • pp.48-55
    • /
    • 2012
  • Pressure vessels in vehicle industries, power plants, and chemical industries are often affected by flaw and defect generated inside the pressure vessels due to production processes or being used. It is very important to detect such internal defects of pressure vessel because they sometimes bring out serious problems. In this paper, an optical defect detection method using digital shearography is used. This method has advantages that the inspection can be performed at a real time measurement and is less sensitive to environmental noise. Shearography is a laser-based technique for full-field, non-contacting measurement of surface deformation (displacement or strain). The ultimate goal of this paper is to detect flaws in pressure vessels and to measure the lengths of the flaws by using unwrapping, phase images which are only obtained by Phase map. Through this method, we could decrease post-processing (next processing). Real length of a pixel can be calculated by comparing minimum and maximum unwrapping images with shearing angle. Through measuring several specimen defects which have different lengths and depths of defect, it can be possible to interpret quantitatively by calculating gray level.

A Study on the Measurement of Acoustic Emission and Deformation Behaviors of Rock and Concrete under Compression (암석 및 콘크리트의 압축변형거동과 미소파괴음 측정에 관한 연구)

  • 심현진;이정인
    • Tunnel and Underground Space
    • /
    • v.10 no.1
    • /
    • pp.59-69
    • /
    • 2000
  • Acoustic emission is n burst of microseismic waves generated by microscopic failure due to deformation in materials. The study on the detection of initiation and propagation of microcracks from acoustic emission measurement is very important for the evaluation of the stability of underground rock structures by the nondestructive letting method. In this study, acoustic emission was measured under uniaxial stiffness loading test used to obtain the complete stress-strain curves of marble and concrete used as reinforced materials of rock structures. The analysis of acoustic emission parameters and source location were performed to discuss the characteristics of the deformation and failure behavior of rock and concrete. And acoustic emission was measured under cyclic loading test to verify the Kaiser effect associated with the damage of materials, in situ stress of rock, and stress history of concrete structure.

  • PDF

Flame Retardant Treatment's Effects and Detection Method on Wooden Buildings' Pigment Layer (Dan-cheong) (국내 목조건축물 단청의 방염제 처리에 따른 영향 및 탐지방법 연구)

  • Kim, Dae Woon;Kim, Chul Woong;Han, Sung Hee;Chung, Yong Jae;Han, Gyu Seong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.4
    • /
    • pp.393-406
    • /
    • 2014
  • To figure out the problems of flame retardant treatment (FRT) on wooden buildings, field investigation and analysis of statistical data are performed. After FRT on historical wooden building, efflorescence and exfoliation showed most often. These problems appeared especially on column, rafter and Ga-gu (Ingredients for supporting structure of a roof) which are liberally spreaded. To compare before and after FRT, analyzed 20 elements using P-XRF. In this process, found sulfur which informs FRT. This helped set up nondestructive assay. Through this process, confirmed field application by analysis residue component of Songgwang-sa Temple.

Delamination and concrete quality assessment of concrete bridge decks using a fully autonomous RABIT platform

  • Gucunski, Nenad;Kee, Seong-Hoon;La, Hung;Basily, Basily;Maher, Ali
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.1
    • /
    • pp.19-34
    • /
    • 2015
  • One of the main causes of a limited use of nondestructive evaluation (NDE) technologies in bridge deck assessment is the speed of data collection and analysis. The paper describes development and implementation of the RABIT (Robotics Assisted Bridge Inspection Tool) for data collection using multiple NDE technologies. The system is designed to characterize three most common deterioration types in concrete bridge decks: rebar corrosion, delamination, and concrete degradation. It implements four NDE technologies: electrical resistivity (ER), impact echo (IE), ground-penetrating radar (GPR), and ultrasonic surface waves (USW) method. The technologies are used in a complementary way to enhance the interpretation. In addition, the system utilizes advanced vision to complement traditional visual inspection. Finally, the RABIT collects data at a significantly higher speed than it is done using traditional NDE equipment. The robotic system is complemented by an advanced data interpretation. The associated platform for the enhanced interpretation of condition assessment in concrete bridge decks utilizes data integration, fusion, and deterioration and defect visualization. This paper concentrates on the validation and field implementation of two NDE technologies. The first one is IE used in the delamination detection and characterization, while the second one is the USW method used in the assessment of concrete quality. The validation of performance of the two methods was conducted on a 9 m long and 3.6 m wide fabricated bridge structure with numerous artificial defects embedded in the deck.

Applicability of nonlinear ultrasonic technique to evaluation of thermally aged CF8M cast stainless steel

  • Kim, Jongbeom;Kim, Jin-Gyum;Kong, Byeongseo;Kim, Kyung-Mo;Jang, Changheui;Kang, Sung-Sik;Jhang, Kyung-Young
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.621-625
    • /
    • 2020
  • Cast austenitic stainless steel (CASS) is used for fabricating different components of the primary reactor coolant system of pressurized water reactors. However, the thermal embrittlement of CASS resulting from long-term operation causes structural safety problems. Ultrasonic testing for flaw detection has been used to assess the thermal embrittlement of CASS; however, the high scattering and attenuation of the ultrasonic wave propagating through CASS make it difficult to accurately quantify the flaw size. In this paper, we present a different approach for evaluating the thermal embrittlement of CASS by assessing changes in the material properties of CASS using a nonlinear ultrasonic technique, which is a potential nondestructive method. For the evaluation, we prepared CF8M specimens that were thermally aged under four different heating conditions. Nonlinear ultrasonic measurements were performed using a contact piezoelectric method to obtain the relative ultrasonic nonlinearity parameter, and a mini-sized tensile test was performed to investigate the correlation of the parameter with material properties. Experimental results showed that the ultrasonic nonlinearity parameter had a correlation with tensile properties such as the tensile strength and elongation. Consequently, we could confirm the applicability of the nonlinear ultrasonic technique to the evaluation of the thermal embrittlement of CASS.

Inversion of spectral analysis of surface waves with analytic Jacobian (해석적 자코비안을 이용한 표면파 기법의 역산)

  • Ha, Hee-Sang
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.3
    • /
    • pp.233-245
    • /
    • 2002
  • The spectral-analysis-of-surface-waves (SASW) method is a nondestructive testing method based upon generation and detection of elastic stress waves. SASW is widely used as one of the techniques to determine stiffness profile in engineering geophysics. The essential steps involved are construction of an experimental dispersion curve from data collected in situ, and inversion of the dispersion curve to determine the stiffness profile. The main object of this study is to derive an analytical Jacobian for the inversion. If we set the subsurface to N homogeneous layer, it could save 2N times Jacobian calculation compared to numerical jacobian calculation during inversion. To reconstruct a stiffness profile, constrained damped least square method was applied for the inversion. The algorithm was tested for the numerical data and for the real asphalt and tunnel data, which were able to verify the stiffness profile. The stiffness profile reconstructed by the algorithm showed the possibility to appraise the soundness of tunnel with applications SASW.

  • PDF