• Title/Summary/Keyword: Non-uniform temperatures

Search Result 50, Processing Time 0.023 seconds

Experimental study of bubble flow behavior during flow instability under uniform and non-uniform transverse heat distribution

  • Al-Yahia, Omar S.;Yoon, Ho Joon;Jo, Daeseong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2771-2788
    • /
    • 2020
  • Experiments are conducted to study bubble flow behavior during the instability of subcooled boiling under uniform and non-uniform transverse heating. The non-uniform heat distribution introduces nonuniform bubble generation and condensation rates on the heated surface, which is different from the uniform heating. These bubble generation and condensation characteristics introduce a non-uniform local pressure distribution in the transverse direction, which creates an extra non-uniform pressure on the flowing bubbles. Therefore, different bubble flow behavior can be observed between uniform and non-uniform heating conditions. In the uniform heating, bubble velocity fluctuations are low, and the bubbles travel straight along the axial direction. In the non-uniform heating, more fluctuation in the bubble velocity occurs at low mass flow rate and high subcooled inlet temperatures, and reverse flow is observed. Additionally, the bubbles show a zigzag trajectory when they pass through the channel, which indicates the existence of cross flow in the transverse direction.

An Investigation of Heat Transfer Characteristics of Swirling Flow in a 180$^{\circ}$ Circular Section Bend with Uniform Heat Flux

  • Chang, Tae-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1520-1532
    • /
    • 2003
  • An experiment was performed to obtain the local heat transfer coefficient and Nusselt number in a circular duct with a 180$^{\circ}$ bend for Re=6 x 10$^4$, 8 x 10$^4$ and 1 x 10$\^$5/ under swirling flow and non-swirling flow conditions. The test tube with a circular section was made from stainless steel having a curvature ration of 9.4. Current heat flux of 5.11 kW/㎡ was applied to the test tube by electrical power and the swirling motion of air was produced by a tangential inlet to the pipe axis at 180$^{\circ}$. Measurements of local wall temperatures and the bulk mean temperatures of air were made at four circumferential positions at 16 stations. The wall temperatures showed a reduced distribution curve at the bend for the non-swirling flow, but this effect did not appear for the swirling flow. The Nusselt number distributions for the swirling flow, which was calculated from the measured wall and the bulk temperatures, were higher than that of the non-swirling flow. The average Nusselt number of the swirling flow increased by about 90-100%, compared to that of the non-swirling flow. The Nu/Nu$\_$DB/ values at the 90$^{\circ}$ station for non-swirling flow and swirling flow were approximately 2.5 and 4.8 at Re=6x10$^4$ respectively. The values agree well with Said's results for non-swirling flow.

UNSTEADY HARTMANN FLOW WITH HEAT TRANSFER IN THE PRESENCE OF UNIFORM SUCTION AND INJECTION

  • Attia Hazem A.
    • The Pure and Applied Mathematics
    • /
    • v.13 no.1 s.31
    • /
    • pp.1-10
    • /
    • 2006
  • The unsteady Hartmann flow of an electrically conducting, viscous, incompressible fluid bounded by two parallel non-conducting porous plates is studied with heat transfer. An external uniform magnetic field and a uniform suction and injection are applied perpendicular to the plates while the fluid motion is subjected to a constant pressure gradient. The two plates are kept at different but constant temperatures while the Joule and viscous dissipations are included in the energy equation. The effect of the magnetic field and the uniform suction and injection on both the velocity and temperature distributions is examined.

  • PDF

Buckling and vibration behavior of a non-uniformly heated isotropic cylindrical panel

  • Bhagata, Vinod S.;Pitchaimani, Jeyaraj;Murigendrappa, S.M.
    • Structural Engineering and Mechanics
    • /
    • v.57 no.3
    • /
    • pp.543-567
    • /
    • 2016
  • This study attempts to address the buckling and free vibration characteristics of an isotropic cylindrical panel subjected to non-uniform temperature rise using numerical approach. Finite element analysis has been used in the present study. The approach involves three parts, in the first part non-uniform temperature field is obtained using heat transfer analysis, in the second part, the stress field is computed under the thermal load using static condition and, the last part, the buckling and pre-stressed modal analysis are carried out to compute critical buckling temperature as well as natural frequencies and associated mode shapes. In the present study, the effect of non-uniform temperature field, heat sink temperatures and in-plane boundary constraints are considered. The relation between buckling temperature under uniform and non-uniform temperature fields has been established. Results revealed that decrease (Case (ii)) type temperature variation field influences the fundamental buckling mode shape significantly. Further, it is observed that natural frequencies under free vibration state, decreases as temperature increases. However, the reduction is significantly higher for the lowest natural frequency. It is also found that, with an increase in temperature, nodal and anti-nodal positions of free vibration mode shapes is shifting towards the location where the intensity of the heat source is high and structural stiffness is low.

Multiplicity of Flows in a Rayleigh-Benard Problem with Non-Uniform Wall Temperatures (불균일 벽면 온도를 갖는 Rayleigh-Benard 문제에서의 유동의 다수성)

  • Yoo, Joo-Sik;Kim, Yong-Jin
    • 대한공업교육학회지
    • /
    • v.30 no.2
    • /
    • pp.123-129
    • /
    • 2005
  • A Rayleigh-Benard problem with non-uniform wall temperatures of the form, $T_L=T_1+{\delta}{\Delta}T{\sin}kx$ and $T_U=T_2-{\delta}{\Delta}{\sin (kx)$, is numerically investigated. In the conduction-dominated regime with small a Rayleigh number, a two-tier structure appears with two counter-rotating rolls stacked on the top of each other. The flow becomes unstable with increase of the Rayleigh number, and multicellular convection occurs above a critical Rayleigh number. The multicellular flows at high Rayleigh numbers consist of approximetely square-shape cells. Four multiple flows and dual flows classified by the number of cells are found at k=0.5 and k=1, respectively.

Hall Effect on Unsteady Hartmann Flow with Heat Transfer Under Exponential Decaying Pressure Gradient

  • Attia Hazem A.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1302-1308
    • /
    • 2006
  • The unsteady Hartmann flow of an electrically conducting, viscous, incompressible fluid bounded by two parallel non-conducting porous plates is studied with heat transfer taking the Hall effect into consideration. An external uniform magnetic field and a uniform suction and injection are applied perpendicular to the plates while the fluid motion is subjected to an exponential decaying pressure gradient. The two plates are kept at different but constant temperatures while the Joule and viscous dissipations are included in the energy equation. The effect of the ion slip and the uniform suction and injection on both the velocity and temperature distributions is examined.

A study on the heat transfer characteristics of swirling flow in a circular sectioned $180^{\circ}C$bend with uniform heat flux (균일 열플럭스가 있는 $180^{\circ}C$ 원형단면 곡관의 선회유동 열전달특성 연구)

  • Lee, Sang-Bae;Gwon, Gi-Rin;Jang, Tae-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.5
    • /
    • pp.615-627
    • /
    • 1997
  • An experiment was performed to local heat transfer coefficient and Nusselt number in the circular duct of 180.deg. bend for Re=6*10$^{4}$, 8*10$^{4}$ and 1*10$^{5}$ at swirling flow and non-swirling flow conditions. The test tube with circular section was made by stainless which has curvature ratio 9.4. The wall of test tube was heated directly by electrical power to 3.51 kw and swirling motion of air was produced by a tangential inlet to the pipe axis at the 180 degree. Measurements of local wall temperatures and bulk mean temperature of air are made at four circumferential positions in the 16 stations. The wall temperatures show particularly reduced distribution curve at bend for non-swirling flow but this effect does not appear for swirling flow. Nusselt number distributions for swirling flow which was calculated from the measured wall and bulk temperatures were higher than that of non-swirling flow. Average Nusselt number of swirling flow increased about 90 ~ 100% than that of non-swirling flow whole through the test tube. The Nu/N $u_{DB}$ values at the station of 90.deg. for non-swirling flow and swirling flow are respectively about 2.5 and 4.8 at Re=6*10$^{4}$. Also that is good agreement with Said's result for non-swirling flow. flow.

A Improved Scene based Non-uniformity Correction Algorithm for Infrared Camera

  • Hyun, Ho-Jin;Choi, Byung-In
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.1
    • /
    • pp.67-74
    • /
    • 2018
  • In this paper, we propose an efficient scene based non-uniformity correction algorithm which performs the offset correction using the uniform obtained from input scenes for Infrared camera. In general, pixel outputs of a infrared detector can not be uniform. Therefore, the non-uniformity correction procedure need to be performed to make the image outputs uniform. A typical non-uniformity correction method uses a black body at the laboratory to obtain the output of the infrared detector's pixels for two temperatures, HOT and COLD, and calculates the non-uniformity correction parameters. However, output characteristics of the Infrared detector changes while the Infrared camera is operated, the fixed pattern noise of the Infrared detector and dead pixels are generated. To remove the noise, the offset correction is generally performed. The offset correction procedure usually need the additional device such as a thermo-electric cooler, shutter, or non-uniformity correction lens. Therefore, we introduce a general scene based non-uniformity correction technique without additional equipment, and then we propose an improved non-uniformity correction algorithm based on image to solve the problem of the existing technique.

Thermal Convection Between Two Horizontal Plates with Small Amplitude Non-Uniform Temperatures (작은 진폭의 불균일 온도를 갖는 두 수평 평판 사이에서의 열 대류)

  • Yoo Joo-Sik;Kim Yong-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.11
    • /
    • pp.999-1005
    • /
    • 2004
  • Thermal convection between two horizontal walls kept at small amplitude nonuniform temperatures of the form, $T_L=T_1+a{\Delta}T$ sin kx and $T_U=T_2+b{\Delta}T\;sin(kx-{\beta})$ with a, $b{\ll}1$, is numerically investigated. When the Rayleigh number is small, an upright cell is formed between two walls at ${\beta}=0$; the cell is tilted at ${\beta}={\pi}/2$, and a flow with two-tier-structure cells occurs at ${\beta}={\pi}$. As the Rayleigh number is increased, Nusselt number increases smoothly for ${\beta}=0\;and\;{\pi}/2$, but increases rather steeply for ${\beta}={\pi}$ near the critical Rayleigh number ($Ra_c=1708$). When the wave number is small (k=0.5), multicellular convection occurs over one wave length, for all phase differences, and multiple solutions are found.

Effect of Non-Uniform Milling on Quality of Milled Rice during Storage (불균일도정이 저장 중 쌀의 품질에 미치는 영향)

  • Kim, Hoon;Lee, Hyun-Jung;Kim, Oui-Woung;Lee, Se-Eun;Yoon, Doo-Hyun
    • Food Science and Preservation
    • /
    • v.13 no.6
    • /
    • pp.675-680
    • /
    • 2006
  • Uniform milling is regarded as a very essential technology to produce high quality milled rice in Rice Recessing Complex. But non-uniformly milled rice can be produced very easily because of unadequate operation methods of milling system and bad brown rice conditions. This study was conducted to find out the bad effect of non-uniform milling degrees and store temperatures on quality characteristics such as taste of cooked rice, fatty acidity, whiteness and so on of milled rice during storage. According to the increase of non-uniform milling degrees, the fatty acid acidity and b value were increased very rapidly, and taste of cooked rice and whiteness were decreased very rapidly during storage. And the general quality characteristics of milled rice were better at low temperature storage of $5^{\circ}C$ than at high temperature storage at $25^{\circ}C$.