• 제목/요약/키워드: Non-specific immune

검색결과 205건 처리시간 0.023초

Identification of novel Leishmania major antigens that elicit IgG2a response in resistant and susceptible mice

  • MOHAMMADI Mohammad Reza;ZEINALI Majid;ARDESTANI Sussan K.;KARIMINIA Amina
    • Parasites, Hosts and Diseases
    • /
    • 제44권1호
    • /
    • pp.43-48
    • /
    • 2006
  • Experimental murine models with high, intermediate and low levels of genetically based susceptibility to Leishmania major infection reproduce almost entire spectrum of clinical manifestations of the human disease. There are increasing non-comparative studies on immune responses against isolated antigens of L. major in different murine strains. The aim of the present study was to find out whether there is an antigen that can induce protective immune response in resistant and susceptible murine strains. To do that, crude antigenic extract of procyclic and metacyclic promastigotes of L. major was prepared and subjected to SDS-PAGE electrophoresis. Western-blotting was used to search for antigen(s) capable of raising high antibody level of IgG2a versus IgG1 in the sera of both infected resistant and susceptible strains. Two novel antigens from metacyclic promastigotes of L. major (140 and 152 kDa) were potentially able to induce specific dominant IgG2a responses in BALB/c and C57BU6 mice. The 2 antigens also reacted with IgG antibody of cutaneous leishmaniasis patients. We confirm that 140 and 152 kDa proteins of L. major promastigotes are inducing IgG production in mice and humans.

Lewis Lung Carcinoma(LLC) 이식 생쥐에 있어서 천연운지 단백 다당체(Copolang)의 면역조절활성 (Immunomodulating Activities of Copolang, a Proteopolysaccharide from Coriolus versicolor in Lewis Lung Carcinoma (LLC) Bearing mice)

  • 문창규;임철홍;목명수;양경미;한혜승;최재영
    • 약학회지
    • /
    • 제37권1호
    • /
    • pp.9-17
    • /
    • 1993
  • Immune functions of mice bearing Lewis Lung Carcinoma (LLC) were significantly suppressed when evaluated with mitogen responsiveness, IL-2 production and non-specific suppressor activity. Based on these immunosuppressive characteristics of LLC bearing mice, immunomodulating activates of Copolang were investigated in this model. After 15 days of LLC inoculation, Copolang was intraperitoneally administered for 7 consecutive days with doses of 20 or 200 mg/kg. Immune functions were evaluated 3 days after the final administration of Copolang. The results showed that the growth of LLC solid tumor was not inhibited by Copolang. But, mitogens-induced proliferation, IL-2 production and responsiveness to recombinant IL-2 of splenocytes were significantly augmented by the treatment of Copolang. However suppressor cell activity was not affected by Copolang. These results indicate that Copolang expresses potent immunomodulating activates through the augmentations of IL-2 production and responsiveness to recombinant IL-2, which have been generally known to be suppressed in tumor bearing mice, without affecting the growth of tumor.

  • PDF

Characterization of B- , T- , and NK-like Cells in Nile Tilapia (Oreochromis nilotica)

  • Choi, Sang-Hoon;Oh, Chan-Ho
    • Animal cells and systems
    • /
    • 제4권4호
    • /
    • pp.341-345
    • /
    • 2000
  • It has been very difficult to develop and evaluate efficient fish vaccines because fish immune cells have not been properly characterized. In this study, we investigated the cell-mediated immunological properties of B- and T-like cells in Nile tilapia (Oreochromis nilotica). Surface immunoglobulin negative ($slg^{-}$) cell population proliferated in response to mammalian T-cell mitogens PHA and Con A, while surface immunoglobulin positive ($slg^{+}$) cells responded to the B-cell mitogen LPS. The slg$^{[-10]}$ cells from hemocyanin (HC)-immunized Tilapia, compared to the non-immunized control, reacted more to PHA than to Con A. Unexpectedly, antigen (Ag)-specific response was observed in both $slg^{-}$ and $slg^{-}$cells. Regardless of HC immunization, whole leukocytes from 8 head kidney of fish showed natural killer (NK)cell activity. Especially, NK cell activity was much higher in slg$^{[-10]}$ cells than in slg$^{+}$cells, indicating the possibility that fish NK cells were not at least associated with slg$^{+}$ cell population and not activated by Ag. Further understanding of functional fish immune cells will help to evaluate and develop effective vaccines for fishes and to monitor the course of therapy In infected fishes.hes.

  • PDF

효소면역측정법을 이용한 두부 중의 유전자 재조합 대두단백질 분석 (Quantification of Genetically Modified Soy Proteins in Fresh Soybean Curd by Antigen-coated Plate ELISA)

  • 정미현;배형기;김경미;장인숙;고은정;배동호
    • 한국식품과학회지
    • /
    • 제36권5호
    • /
    • pp.828-832
    • /
    • 2004
  • 본 연구에서는 유전자 재조합 되지 않은(non-GM) 대두와 유전자 재조합된(GM) 대두가 혼입되어 제조된 두부에서 효소 면역 측정법을 이용하여 non-GM 대두의 혼입량을 추정하고자 하였다. 두부의 SDS-PAGE 실행 결과 non-GM 두부에서만 나타나는 특이 단백질 non-GM 113kDa 밴드와 non-GM과 GM 두부에서 모두 나타나는 non-GM 24kDa 밴드를 선별하고 이들을 토끼에 면역하여 항체생성 여부를 ELISA한 결과 non-GM 113kDa과 non-GM 24kDa 단백질 모두 항체가 형성됨을 확인하였고 $10^{-1}-10^{-6}$의 단백질 희석배수에서 두부를 이들 항체에 대하여 ELISA함으로써 원료대두의 GM여부를 확인할 수 있었다. 이들 중, 보다 감도가 높았던 non-GM 113kDa 단백질을 $10^{-7}-10^{-6}$의 배수로 희석하여 ELISA 흡광도와 non-GM 단백질의 관계를 나타내는 표준곡선을 작성하였고, 임의로 non-GM 대두와 GM 대두를 혼합하여 제조한 두부의 ELISA 흡광도를 이 표준곡선과 비교하여 non-GM 원료와 GM 원료 작물의 혼입율을 측정한 결과, 높은 정확도를 보였다.

Comparison of immunogenecities of three beta-nodavirus proteins, capsid protein, non-structural protein B1 and B2 in olive flounder

  • Cha, Seung-Ju;Do, Jeong-Wan;Ko, Myoung-Seok;Kim, Jin-Woo;Park, Jeong-Woo
    • 한국어병학회지
    • /
    • 제22권3호
    • /
    • pp.219-228
    • /
    • 2009
  • The genomic and subgenomic RNAs of fish nodavirus encode the four proteins, protein A, capsid protein, non-structural protein B1 and B2. In this study, we describe the immune response of olive flounder Paralichthys olivaceus immunized with live fish nodavirus or recombinant capsid protein, non-structural protein B1 and B2 expressed in E. coli. Nodavirus-infected flounder produced antibodies to capsid protein, B1 and B2 and nodavirus-neutralizing activities were detected in the serum of the nodavirus-infected flounder. The flounder were immunized against the three recombinant proteins of fish nodavirus and the sera from these immunized fishes were assayed for nodavirus-specific antibody by ELISA and a neutralization test. In the immunized flounder, all three recombinant proteins induced the production of similar levels of antibody, but only the antibody to capsid protein significantly neutralized nodavirus. These results indicate that all three nodaviral proteins are immunogenic in flounder, but only the capsid protein can induce neutralizing antibody against nodavirus.

Synthesis of New Uracil-5-Sulfonamide Derivatives and Immuno-Stimulatory Effect of a Chemically Modified Hemolymph of Biomphalaria alexandrina on Schistosoma mansoni Infected Mice

  • Fathalla, O.A.;Haiba, M.E.;Maghraby, A.S.
    • Archives of Pharmacal Research
    • /
    • 제26권5호
    • /
    • pp.358-366
    • /
    • 2003
  • Some N-p-substituted phenyl uracil-5-sulphonamide derivatives have been synthesized to be evaluated as molluscicides against Biomphalaria alexandrina snails, the intermediate host of Schistosoma mansoni. Schistosoma mansoni infected mice were treated with hemolymph obtained from pre-treated Biomphalaria alexandrina snails with the products 4a, 10a, 10b and 4b or obtained from non-treated snails. The selection of the concentration based on the predetermined dose which caused mortality of less than 50% of snails/24 h. $LC_{50}$ of compounds 4a, 10a, 10b and 4b was 50, 100, 200 and 50 ppm respectively. The result showed that immuno-stimulatory effect of treated hemolymph with compounds 4a, 10a and 4b was related to significant protective effects (44.4, 34.6 and 50.4% reduction in worm burden respectively). In addition, mean total worm burdens were significantly reduced in non treated hemolymph by 33.8%. The effect of hemolymph obtained from treated or non treated snails on S. mansoni adult worms antigens was studied by indirect immunofluorescence technique using chronic mouse sera (CMS). The results indicated that there was a strong reaction with epitopes in gut epithelium, tubercles, teigument and subtegumental musculature of untreated and treated S. mansoni adult worms antigens. Therefore, treatment of hemolymph obtained from pre-treated snails with compounds 4a, 10a, and 4b can stimulate specific immune response and induce protective effects against S. mansoni infection.

다양한 농도의 에드워드 백신액에 대한 넙치, Paralichthys olivaceus의 침지 투여 효과 (Effects of immersion vaccination in different concentration of edwardsiellosis vaccine on olive flounder, Paralichthys olivaceus)

  • 권문경;방종득
    • 한국어병학회지
    • /
    • 제17권3호
    • /
    • pp.171-177
    • /
    • 2004
  • 본 연구는 양식 넙치, Paralichthys olivaceus에서 희석 백신의 장시간 처리 효과를 조사하였다. 넙치에 상업용 에드워드 백신 (5㎎/ℓ)을 $10^0$, $10^{-1}$, $10^{-2}$ and $10^{-3}$로 희석하여 2분 (short immersion, SI)과 24시간 (prolonged immersion, PI) 침지한 다음 시험어의 비특이적 면역계 (혈청 라이소자임, 살균능)와 특이적 면역계 (응집항체가)의 활성과 Edwardsiella tarda 공격에 대한 방어력의 변화를 조사하였다. 그 결과 에드와드 백신을 $10^{-1}$$10^{-2}$로 희석하여 장시간 침지 투여 시험구가 고농도 백신의 단시간 침지 시험구에 비하여 혈청 라이소자임 활성과 보체의 살균능이 높았으며 에드워드균 감염에 대한 방어력도 높았다. 따라서 희석 백신을 장시간 침지 처리하는 방법은 백신 효과를 높일 수 있을 것으로 기대된다.

Effects of enzymatically hydrolyzed fish by-products in diet of juvenile rainbow trout (Oncorhynchus mykiss)

  • Bae, Jinho;Azad, Abul Kalam;Won, Seonghun;Hamidoghli, Ali;Seong, Minji;Bai, Sungchul C.
    • Fisheries and Aquatic Sciences
    • /
    • 제22권1호
    • /
    • pp.1.1-1.8
    • /
    • 2019
  • Five experimental diets were formulated to evaluate the effects of dietary enzymatically hydrolyzed tuna by-product on growth, non-specific immune responses, and hematology of juvenile rainbow trout (Oncorhynchus mykiss). A basal diet with 50% of fishmeal was used as control (CON) and four other diets replaced 12.5% ($TBB_{12.5}$), 25% ($TBB_{25}$), 37.5% ($TBB_{37.5}$), and 50% ($TBB_{50}$) of fish meal in the CON diet. Juvenile rainbow trout ($4.87{\pm}0.05g$) were randomly distributed into 15 tanks (50 L) and fed 3-4% of wet body weight two times a day. At the end of 7 weeks of feeding trial, weight gain, specific growth rate, feed efficiency, and protein efficiency ratio of fish fed CON diet were significantly higher than those of fish fed $TB_{50}$ diet (P < 0.05). But there were no significant differences among fish fed CON, $TBB_{12.5}$, $TBB_{25}$, and $TBB_{37.5}$ diets (P > 0.05). There were no significant differences in GPT levels among fish fed CON, $TBB_{12.5}$, $TBB_{25}$, and $TBB_{37.5}$ diets. Also, there were no significant differences in lysozyme, superoxide dismutase, glucose, and total protein levels in all experimental diet (P > 0.05). The broken-line analysis indicated that the minimum dietary level of enzymatically hydrolyzed tuna by-product to replace fishmeal could be 29.7% in rainbow trout. These results indicated that the optimum level of dietary enzymatically hydrolyzed tuna by-product could replace greater than 29.7% but less than 37.5% of fishmeal in juvenile rainbow trout diet.

Chikungunya Virus nsP2 Impairs MDA5/RIG-I-Mediated Induction of NF-κB Promoter Activation: A Potential Target for Virus-Specific Therapeutics

  • Bae, Sojung;Lee, Jeong Yoon;Myoung, Jinjong
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권12호
    • /
    • pp.1801-1809
    • /
    • 2020
  • Chikungunya virus (CHIKV) was first identified in 1952 as a causative agent of outbreaks. CHIKV is transmitted by two mosquito species, Aedes aegypti and A. albopictus. Symptoms after CHIKV infection in human are typically fever and joint pain, but can also include headache, muscle pain, joint swelling, polyarthralgia, and rash. CHIKV is an enveloped single-stranded, positive-sense RNA virus with a diameter of approximately 70 nm. The pathogenesis of CHIKV infection and the mechanism by which the virus evades the innate immune system remain poorly understood. Moreover, little is known about the roles of CHIKV-encoded genes in the viral evasion of host immune responses, especially type I interferon (IFN) responses. Therefore, in the present study, we screened CHIKV-encoded genes for their regulatory effect on the activation of nuclear factor kappa B (NF-κB), a critical transcription factor for the optimal activation of IFN-β. Among others, non-structural protein 2 (nsP2) strongly inhibited melanoma differentiation-associated protein 5 (MDA5)-mediated induction of the NF-κB pathway in a dose-dependent manner. Elucidation of the detailed mechanisms of nsP2-mediated inhibition of the MDA5/RIG-I signaling pathway is anticipated to contribute to the development of virus-specific therapeutics against CHIKV infection.

Multi-epitope vaccine against drug-resistant strains of Mycobacterium tuberculosis: a proteome-wide subtraction and immunoinformatics approach

  • Md Tahsin Khan;Araf Mahmud;Md. Muzahidul Islam;Mst. Sayedatun Nessa Sumaia;Zeaur Rahim;Kamrul Islam;Asif Iqbal
    • Genomics & Informatics
    • /
    • 제21권3호
    • /
    • pp.42.1-42.23
    • /
    • 2023
  • Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, one of the most deadly infections in humans. The emergence of multidrug-resistant and extensively drug-resistant Mtb strains presents a global challenge. Mtb has shown resistance to many frontline antibiotics, including rifampicin, kanamycin, isoniazid, and capreomycin. The only licensed vaccine, Bacille Calmette-Guerin, does not efficiently protect against adult pulmonary tuberculosis. Therefore, it is urgently necessary to develop new vaccines to prevent infections caused by these strains. We used a subtractive proteomics approach on 23 virulent Mtb strains and identified a conserved membrane protein (MmpL4, NP_214964.1) as both a potential drug target and vaccine candidate. MmpL4 is a non-homologous essential protein in the host and is involved in the pathogen-specific pathway. Furthermore, MmpL4 shows no homology with anti-targets and has limited homology to human gut microflora, potentially reducing the likelihood of adverse effects and cross-reactivity if therapeutics specific to this protein are developed. Subsequently, we constructed a highly soluble, safe, antigenic, and stable multi-subunit vaccine from the MmpL4 protein using immunoinformatics. Molecular dynamics simulations revealed the stability of the vaccine-bound Tolllike receptor-4 complex on a nanosecond scale, and immune simulations indicated strong primary and secondary immune responses in the host. Therefore, our study identifies a new target that could expedite the design of effective therapeutics, and the designed vaccine should be validated. Future directions include an extensive molecular interaction analysis, in silico cloning, wet-lab experiments, and evaluation and comparison of the designed candidate as both a DNA vaccine and protein vaccine.