• 제목/요약/키워드: Non-normal process

Search Result 286, Processing Time 0.161 seconds

Implementation of Nonparametric Statistics in the Non-Normal Process (비정규 공정에서 비모수 통계의 적용)

  • Choe, Seong-Un
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2012.04a
    • /
    • pp.573-577
    • /
    • 2012
  • Based on latest research, the parametric quality statistics cannot be used in non-normal process with demand pattern of many-variety and small-volume, since it involves extremely small sample size. The research proposes nonparametric quality statistics according to the number of lot or batch in the non-normal process. Additionally, the nonparametric Process Capability Index (PCI) is used with 14 identified non-normal distributions.

  • PDF

A Study on the Application of CUSUM Control Charts under Non-normal Process (비정규 공정에서의 누적합 관리도 적용에 관한 연구)

  • Kim, Jong-Geol;Eom, Sang-Jun;Choe, Seong-Won
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2011.11a
    • /
    • pp.535-549
    • /
    • 2011
  • Control chart is most widely used in SPC(Statistical Process Control), Recently it is a critical issue that the standard control chart is not suitable to non-normal process with very small percent defective. Especially, this problem causes serious errors in the reliability procurement, such as semiconductor, high-precision machining and chemical process etc. Procuring process control technique for non-normal process with very small percent defective and perturbation is becoming urgent. Control chart technique in non-normal distribution become very important issue. In this paper, we investigate on research trend of control charts under non-normal distribution with very small percent defective and perturbation, and propose some variable-transformation methods applicable to CUSUM control charts in non-normal process.

  • PDF

A New Process Capability Measure for Non-normal Process

  • Jun, Mi-Jung;Cho, Gyo-Young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.4
    • /
    • pp.869-878
    • /
    • 2007
  • In this paper a new process capability index $C_{psks}$ is introduced for non-normal process. $C_{psks}$ that is proposed by transformation of the $C_{psks}$ incorporates an additional skewness correction factor in the denominator of $C_{psks}$. The use of each technique is illustrated by reference to a distribution system which includes the Pearson and Johnson functions. Accordingly, $C_{psks}$ is proposed as the process capability measure for non-normal process.

  • PDF

A New Process Incapability Measure for Non-normal Process

  • Jun, Mi-Jung;Cho, Gyo-Young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.4
    • /
    • pp.937-943
    • /
    • 2007
  • In this paper a new process incapability index $C^*_{psks}$ is introduced for non-normal process. $C^*_{psks}$ is proposed by transformation of the $C^*_{psks}$. The use of each technique is illustrated by reference to a distribution system which includes the Pearson and Johnson functions. Accordingly, $C^*_{psks}$ is proposed as the process capability measures for non-normal process.

  • PDF

Research Results and Trends Analysis on Process Control Charts for Non-normal Process (비정규 공정을 위한 공정관리도의 연구동향 분석)

  • Kim, Jong-Gurl;Kim, Chang-Su;Um, Sang-Joon;Kim, Hyung-Man;Choi, Seong-Won;Jeong, Dong-Gu
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2013.04a
    • /
    • pp.547-556
    • /
    • 2013
  • Control chart is most widely used in SPC(Statistical Process Control), Recently it is a critical issue that the standard control chart is not suitable to non-normal process with very small percent defective. Especially, this problem causes serious errors in the reliability procurement, such as semiconductor, high-precision machining and chemical process etc. Procuring process control technique for non-normal process with very small percent defective and perturbation is becoming urgent. Control chart technique in non-normal distribution become very important issue. In this paper, we investigate on research trend of control charts under non-normal distribution.

  • PDF

A Study of Technology Trends for Effective Process Control under Non-Normal Distribution (비정규분포하에서의 효과적 공정관리를 위한 기술체계동향 연구)

  • Kim, Jong-Gurl;Um, Sang-Joon;Kim, Young-Sub;Ko, Jae-Kyu
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2008.11a
    • /
    • pp.599-610
    • /
    • 2008
  • It is an important and urgent issue to improve process capability in quality control. Process capability refers to the uniformity of the process. The variability in the process is a measure of the uniformity of output. A simple, quantitative way to express process capability, the degree of variability from target in specification is defined by process capability index(PCI). Almost process capability indices are defined under normal distribution. However, these indices can not be applied to the process of non-normal distribution including reliability. We investigate current research on the process of non-normal distribution, and advanced method and technology for developing more reliable and efficient PCI. Finally we suggest the perspective for future study.

  • PDF

A Study on a Measure for Non-Normal Process Capability (비정규 공정능력 측도에 관한 연구)

  • 김홍준;김진수;조남호
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2001.06a
    • /
    • pp.311-319
    • /
    • 2001
  • All indices that are now in use assume normally distributed data, and any use of the indices on non-normal data results in inaccurate capability measurements. Therefore, $C_{s}$ is proposed which extends the most useful index to date, the Pearn-Kotz-Johnson $C_{pmk}$, by not only taking into account that the process mean may not lie midway between the specification limits and incorporating a penalty when the mean deviates from its target, but also incorporating a penalty for skewness. Therefore we propose, a new process capability index $C_{psk}$( WV) applying the weighted variance control charting method for non-normally distributed. The main idea of the weighted variance method(WVM) is to divide a skewed or asymmetric distribution into two normal distribution from its mean to create two new distributions which have the same mean but different standard distributions. In this paper we propose an example, a distribution generated from the Johnson family of distributions, to demonstrate how the weighted variance-based process capability indices perform in comparison with another two non-normal methods, namely the Clements and the Wright methods. This example shows that the weighted valiance-based indices are more consistent than the other two methods In terms of sensitivity to departure to the process mean/median from the target value for non-normal process.s.s.s.

  • PDF

Evaluation of Non - Normal Process Capability by Johnson System (존슨 시스템에 의한 비정규 공정능력의 평가)

  • 김진수;김홍준
    • Journal of the Korea Safety Management & Science
    • /
    • v.3 no.3
    • /
    • pp.175-190
    • /
    • 2001
  • We propose, a new process capability index $C_{psk}$(WV) applying the weighted variance control charting method for non-normally distributed. The main idea of the weighted variance method(WVM) is to divide a skewed or asymmetric distribution into two normal distributions from its mean to create two new distributions which have the same mean but different standard deviations. In this paper we propose an example, a distributions generated from the Johnson family of distributions, to demonstrate how the weighted variance-based process capability indices perform in comparison with another two non-normal methods, namely the Clements and the Wright methods. This example shows that the weighted valiance-based indices are more consistent than the other two methods in terms of sensitivity to departure to the process mean/median from the target value for non-normal processes. Second method show using the percentage nonconforming by the Pearson, Johnson and Burr systems. This example shows a little difference between the Pearson system and Burr system, but Johnson system underestimated than the two systems for process capability.

  • PDF

A New Measure of Process Capability for Non-Normal Process : $C_{psk}$ (비정규 공정에 대한 공정능력의 새로운 측도: $C_{psk}$)

  • 김홍준;송서일
    • Journal of Korean Society for Quality Management
    • /
    • v.26 no.1
    • /
    • pp.48-60
    • /
    • 1998
  • This paper proposes a fourth generation index $C_{psk}$, constructed from $C_{psk}$, by introducing the factor|$\mu$-T| in the numerator as an extra penalty for the departure of the process mean from the preassigned target value T. The motivation behind the introduction of $C_{psk}$ is that when $T\neqM$ process shifts away from target are evaluated without respect to direction. All indices that are now in use assume normally distributed data, and any use of the indices on non-normal data results in inaccurate capability measurements. In this paper, a new process capability index $C_{psk}$ is introduced for non-normal process. The Pearson curve and the Johnson curve are selected for capability index calculation and data modeling the normal-based index $C_{psk}$ is used as the model for non-normal process. A significant result of this research find that the ranking of the six indices, $C_{p}$, $C_{pk}$, $C_{pm}$, ${C^*}_{psk}$, $C_{pmk}$, $C_{psk}$in terms of sensitivity to departure of the process median from the target value from the most sensitive one up to the least sensitive are $C_{psk}$, $C_{pmk}$, ${C^*}_{psk}$,$C_{pm}$, $C_{pk}$, $C_{p}$.

  • PDF

A STUDY ON PROCESS CAPABILITY INDICES FOR NON-NORMAL DATA

  • Kwon Seungsoo;Park Sung H.;Xu Jichao
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 1998.11a
    • /
    • pp.159-173
    • /
    • 1998
  • Quality characteristics on the properties of process capability indices (PCIs) are often required to be normally distributed. But, if a characteristic is not normally distributed, serious errors can result from normal-based techniques. In this case, we may well consider the use of new PCIs specially designed to be robust for non-normality. In this paper, a newly proposed measure of process capability is introduced and compared with existing PCIs using the simulated non-normal data.

  • PDF